Advertisement

A Spinal Column Exergame for Occupational Health Purposes

  • Sergio Valdivia
  • Robin Blanco
  • Alvaro UribeEmail author
  • Lina Penuela
  • David Rojas
  • Bill Kapralos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10653)

Abstract

Sedentary, bad posture, and repetitive movements are the leading cause of several health problems, including spinal column pain, which, can lead to work absenteeism, deterioration of the quality of life, and surgery in extreme cases. Physical activity and exercise can reduce the risk of spinal column problems, and pain. However, sustaining healthy habits, such as exercising, requires motivation and engagement. Exergames are becoming more relevant thanks in part to the use of wearable technologies that provide compelling, engaging, and motivating experiences that can help improve health care. In this work, we present the development of a spinal column occupational health exergame and a study on engagement with two motion tracking technologies, a Microsoft Kinect V2 sensor, and an inertial measurement device. Results indicate, that the inertial measurement unit performs better than Microsoft’s Kinect V2, but the game was perceived as more engaging using Microsoft’s Kinect V2.

Keywords

Exergame Posture tracking 3DUI 

Notes

Acknowledgements

The authors would like to thank Universidad Militar Nueva Granada for funding Project ING-2377.

References

  1. 1.
    Luttmann, A., Jager, M., Griefahn, B., Caffier, G., Liebers, F., Organization, W.H., et al.: Preventing musculoskeletal disorders in the workplace (2003)Google Scholar
  2. 2.
    World Health Organization: WHO — Occupational and work-related diseases. WHO (2012)Google Scholar
  3. 3.
    Brownson, R.C., Hoehner, C.M., Day, K., Forsyth, A., Sallis, J.F.: Measuring the built environment for physical activity: state of the science. Am. J. Prev. Med. 36(4), S99–S123 (2009)CrossRefGoogle Scholar
  4. 4.
    Cromie, J.E., Robertson, V.J., Best, M.O.: Occupational health and safety in physiotherapy: Guidelines for practice. Aust. J. Physiotherapy 47, 43–51 (2001)CrossRefGoogle Scholar
  5. 5.
    Craig, C.L., Marshall, A.L., Sjöström, M., Bauman, A.E., Booth, M.L., Ainsworth, B.E., Pratt, M., Ekelund, U., Yngve, A., Sallis, J.F., et al.: International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 35(8), 1381–1395 (2003)CrossRefGoogle Scholar
  6. 6.
    Bassett, D.R.: Validity of four motion sensors in measuring moderate intensity physical activity. Med. Sci. Sports Exerc. 32(9), S471–S480 (2000)CrossRefGoogle Scholar
  7. 7.
    Rosenberger, M.E., Buman, M.P., Haskell, W.L., McConnell, M.V., Carstensen, L.L.: Twenty-four hours of sleep, sedentary behavior, and physical activity with nine wearable devices. Med. Sci. Sports Exerc. 48(3), 457–465 (2016)CrossRefGoogle Scholar
  8. 8.
    Reichert, F.F., Barros, A.J., Domingues, M.R., Hallal, P.C.: The role of perceived personal barriers to engagement in leisure-time physical activity. Am. J. Public Health 97(3), 515–519 (2007)CrossRefGoogle Scholar
  9. 9.
    Wingrave, C.A., Williamson, B., Varcholik, P.D., Rose, J., Miller, A., Charbonneau, E., Bott, J., LaViola Jr., J.J.: The wiimote and beyond: Spatially convenient devices for 3d user interfaces. IEEE Comput. Graphics Appl. 30(2), 71–85 (2010)CrossRefGoogle Scholar
  10. 10.
    Brosnan, S.: The potential of wii-rehabilitation for persons recovering from acute stroke. Phys. Disabil. 32(1), 1–3 (2009)MathSciNetGoogle Scholar
  11. 11.
    Herz, N.B., Mehta, S.H., Sethi, K.D., Jackson, P., Hall, P., Morgan, J.C.: Nintendo wii rehabilitation (Wii-hab) provides benefits in parkinson’s disease. Parkinsonism Relat. Disord. 19(11), 1039–1042 (2013)CrossRefGoogle Scholar
  12. 12.
    Zhang, H.: Head-mounted display-based intuitive virtual reality training system for the mining industry. Int. J. Min. Sci. Technol. 27(4), 717–722 (2017). Special Issue on Advances in Mine Safety Science and EngineeringMathSciNetCrossRefGoogle Scholar
  13. 13.
    Luna-Oliva, L., Ortiz-Gutiérrez, R.M., Cano-de la Cuerda, R., Piédrola, R.M., Alguacil-Diego, I.M., Sánchez-Camarero, C., C, M.C.: Kinect Xbox 360 as a therapeutic modality for children with cerebral palsy in a school environment: a preliminary study. NeuroRehabilitation 33(4), 513–521 (2013)Google Scholar
  14. 14.
    Case, M.A., Burwick, H.A., Volpp, K.G., Patel, M.S.: Accuracy of smartphone applications and wearable devices for tracking physical activity data. JAMA 313(6), 625–626 (2015)CrossRefGoogle Scholar
  15. 15.
    Pirovano, M., Surer, E., Mainetti, R., Lanzi, P.L., Borghese, N.A.: Exergaming and rehabilitation: A methodology for the design of effective and safe therapeutic exergames. Entertainment Comput. 14, 55–65 (2016)CrossRefGoogle Scholar
  16. 16.
    Campbell, R., Evans, M., Tucker, M., Quilty, B., Dieppe, P., Donovan, J.: Why don’t patients do their exercises? Understanding non-compliance with physiotherapy in patients with osteoarthritis of the knee. J. Epidemiol. Community Health 55(2), 132–138 (2001)CrossRefGoogle Scholar
  17. 17.
    Malloy, K.M., Milling, L.S.: The effectiveness of virtual reality distraction for pain reduction: a systematic review. Clin. Psychol. Rev. 30(8), 1011–1018 (2010)CrossRefGoogle Scholar
  18. 18.
    Macvean, A., Robertson, J.: Understanding exergame users’ physical activity, motivation and behavior over time. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1251–1260. ACM (2013)Google Scholar
  19. 19.
    Brauner, P., Calero Valdez, A., Schroeder, U., Ziefle, M.: Increase physical fitness and create health awareness through exergames and gamification. In: Holzinger, A., Ziefle, M., Hitz, M., Debevc, M. (eds.) SouthCHI 2013. LNCS, vol. 7946, pp. 349–362. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39062-3_22 CrossRefGoogle Scholar
  20. 20.
    Vander Schee, C.J., Boyles, D.: exergaming, corporate interests and the crisis discourse of childhood obesity. Sport Educ. Soc. 15(2), 169–185 (2010)CrossRefGoogle Scholar
  21. 21.
    Navia, M., Uribe-Quevedo, A.: Development of an eye tracking occupational health game. In: 1st International Workshop on Assistive Technologies (2015)Google Scholar
  22. 22.
    Ortiz, S., Uribe-Quevedo, A., Kapralos, B.: Hand VR exergame for occupational health care. In: MMVR, pp. 281–284 (2016)Google Scholar
  23. 23.
    Ramos-Montilla, E., Uribe-Quevedo, A.: Development of an open electronics user inerface for lower member occupational health care exergaming. In: Stephanidis, C. (ed.) HCI 2015. CCIS, vol. 529, pp. 478–483. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21383-5_80 CrossRefGoogle Scholar
  24. 24.
    Gianino, J.M., Paice, J.A., York, M.M.: Spinal cord anatomy. Intrathecal Drug Therapy for Spasticity and Pain, pp. 3–14. Springer, New York (1996)CrossRefGoogle Scholar
  25. 25.
    Adams, M.A.M.A.: The biomechanics of back pain. Churchill Livingstone/Elsevier (2013)Google Scholar
  26. 26.
    Adams, M.A., Bogduk, N., Burton, K., Dolan, P.: The Biomechanics of Back Pain. Elsevier Health Sciences (2012)Google Scholar
  27. 27.
    Fullerton, T.: Game Design Workshop: A Playcentric Approach to Creating Innovative Games. CRC Press (2014)Google Scholar
  28. 28.
    Sinclair, J., Hingston, P., Masek, M.: Considerations for the design of exergames. In: Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia, pp. 289–295. ACM (2007)Google Scholar
  29. 29.
    Arnab, S., Lim, T., Carvalho, M.B., Bellotti, F., Freitas, S., Louchart, S., Suttie, N., Berta, R., De Gloria, A.: Mapping learning and game mechanics for serious games analysis. Br. J. Educ. Technol. 46(2), 391–411 (2015)CrossRefGoogle Scholar
  30. 30.
    Cowley, B., Charles, D., Black, M., Hickey, R.: Toward an understanding of flow in video games. Comput. Entertainment (CIE) 6(2) (2008). 20Google Scholar
  31. 31.
    Brockmyer, J.H., Fox, C.M., Curtiss, K.A., McBroom, E., Burkhart, K.M., Pidruzny, J.N.: The development of the game engagement questionnaire: A measure of engagement in video game-playing. J. Exp. Soc. Psychol. 45(4), 624–634 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sergio Valdivia
    • 1
  • Robin Blanco
    • 1
  • Alvaro Uribe
    • 3
    Email author
  • Lina Penuela
    • 1
  • David Rojas
    • 2
  • Bill Kapralos
    • 3
  1. 1.Universidad Militar Nueva GranadaBogotaColombia
  2. 2.The Wilson CentreTorontoCanada
  3. 3.University of Ontario Institute of TechnologyOshawaCanada

Personalised recommendations