Skip to main content

Emotions Detection Through the Analysis of Physiological Information During Video Games Fruition

Part of the Lecture Notes in Computer Science book series (LNISA,volume 10653)

Abstract

Games are interactive tools able to arouse emotions in the user. This is particularly relevant in Serious Games, where the main goal could be educational, pedagogical, etc. Therefore, understanding the players’ emotions during the game fruition could provide a valid support to the developers and researchers in video games field in order to design a more effective product. The presented research is a starting point to propose a framework for the determination of the player emotions through physiological information. We acquire several signals: facial electromyography, electrocardiogram, galvanic skin response, and respiration rate. We then compare the data to an emotional player assessment, defined using a valence and an arousal vector, through the application of Machine Learning techniques. The obtained results seem to suggest that the proposed approach can represent a valid tool to analyze the players’ emotions.

Keywords

  • Video game
  • Serious game
  • Emotion detection
  • Machine Learning
  • Feature selection
  • Physiological data
  • Affective Computing

The original version of this article was revised. Modifications have made to Fig. 2. For detailed information please see erratum. The erratum to this publication is available online at https://doi.org/10.1007/978-3-319-71940-5_23

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-71940-5_18
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-71940-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Fullerton, T.: Game Design Workshop: A Playcentric Approach to Creating Innovative Games. CRC Press, Boca Raton (2014)

    Google Scholar 

  2. Damasio, A.R., Tranel, D., Damasio, H.C.: Behavior: theory and preliminary testing. In: Frontal Lobe Function and Dysfunction, p. 217 (1991)

    Google Scholar 

  3. Damásio, A.R.: Descartes’ Error: Emotion, Reason, and the Human Brain. Quill (1994)

    Google Scholar 

  4. Grodal, T.: Video games and the pleasures of control. In: Media Entertainment: The Psychology of its Appeal, pp. 197–213 (2000)

    Google Scholar 

  5. Granic, I., Lobel, A., Engels, R.C.M.E.: The benefits of playing video games. Am. Psychol. 69(1), 66 (2014)

    CrossRef  Google Scholar 

  6. Isbister, K.: How Games Move Us: Emotion by Design. MIT Press, Cambridge (2016)

    Google Scholar 

  7. Bateman, C.: Beyond gAme Design: Nine Steps Toward Creating Better Videogames. Cengage Learning (2009)

    Google Scholar 

  8. Höök, K.: Affective loop experiences – what are they? In: Oinas-Kukkonen, H., Hasle, P., Harjumaa, M., Segerståhl, K., Øhrstrøm, P. (eds.) PERSUASIVE 2008. LNCS, vol. 5033, pp. 1–12. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68504-3_1

    CrossRef  Google Scholar 

  9. Michael, D.R., Chen, S.L.: Serious Games: Games that eDucate, Train, and Inform. Muska & Lipman/Premier-Trade, Cengage (2005)

    Google Scholar 

  10. Ho, T.K.: Random decision forests. In: Proceedings of the Third International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE (1995)

    Google Scholar 

  11. Koster, R.: Theory of Fun for Game Design. O’Reilly Media Inc., Sebastopol (2013)

    Google Scholar 

  12. Ravaja, N., Turpeinen, M., Saari, T., Puttonen, S., Keltikangas-Järvinen, L.: The psychophysiology of James Bond: phasic emotional responses to violent video game events. Emotion 8(1), 114 (2008)

    CrossRef  Google Scholar 

  13. Salen, K., Zimmerman, E.: Rules of Play: Game Design Fundamentals. MIT Press, Cambridge (2004)

    Google Scholar 

  14. Lazzaro, N.: Why we play games: four keys to more emotion without story (2004). http://www.xeodesign.com/whyweplaygames/xeodesign_whyweplaygames.pdf

  15. Yannakakis, G.N., Paiva, A.: Emotion in games. In: Handbook on Affective Computing, pp. 459–471 (2014)

    Google Scholar 

  16. Draper, V.J., Kaber, D.B., Usher, J.M.: Telepresence. Hum. Factors 40(3), 354–375 (1998)

    CrossRef  Google Scholar 

  17. Nakamura, J., Csikszentmihalyi, M.: The concept of flow. Flow and the Foundations of Positive Psychology, pp. 239–263. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-017-9088-8_16

    Google Scholar 

  18. Ravaja, N., Salminen, M., Holopainen, J., Saari, T., Laarni, J., Järvinen, A.: Emotional response patterns and sense of presence during video games: potential criterion variables for game design. In: Proceedings of the Third Nordic Conference on Human-Computer Interaction, pp. 339–347. ACM (2004)

    Google Scholar 

  19. James, W.: What is an emotion? Mind 9(34), 188–205 (1884)

    CrossRef  Google Scholar 

  20. Mauss, B.I., Robinson, M.D.: Measures of emotion: a review. Cogn. Emot. 23(2), 209–237 (2009)

    CrossRef  Google Scholar 

  21. Picard, R.W.: Affective computing (1995)

    Google Scholar 

  22. Hudlicka, E.: Affective computing for game design. In: Proceedings of the 4th International North American Conference on Intelligent Games and Simulation (GAMEON-NA) (2008)

    Google Scholar 

  23. Nacke, L.E.: An introduction to physiological player metrics for evaluating games. In: Seif El-Nasr, M., Drachen, A., Canossa, A. (eds.) Game Analytics, pp. 585–619. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4769-5_26

    CrossRef  Google Scholar 

  24. Ninaus, M., Kober, S.E., Friedrich, E.V.C., Dunwell, I., De Freitas, S., Arnab, S., Ott, M., Kravcik, M., Lim, T., Louchart, S., et al.: Neurophysiological methods for monitoring brain activity in serious games and virtual environments: a review. Int. J. Technol. Enhanced Learn. 6(1), 78–103 (2014)

    CrossRef  Google Scholar 

  25. Ekman, P.: An argument for basic emotions. Cogn. Emot. 6(3–4), 169–200 (1992)

    CrossRef  Google Scholar 

  26. Bradley, M.M., Greenwald, M.K., Petry, M.C., Lang, P.J.: Remembering pictures: pleasure and arousal in memory. J. Exp. Psychol. Learn. Mem. Cogn. 18(2), 379–390 (1992)

    CrossRef  Google Scholar 

  27. Lang, P.J.: The emotion probe: studies of motivation and attention. Am. Psychol. 50(5), 372 (1995)

    CrossRef  Google Scholar 

  28. Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25(1), 49–59 (1994)

    CrossRef  Google Scholar 

  29. Betella, A., Verschure, P.F.M.J.: The affective slider: a digital self-assessment scale for the measurement of human emotions. PLoS ONE 11(2), e0148037 (2016)

    CrossRef  Google Scholar 

  30. Ripamonti, L.A., Mannalà, M., Gadia, D., Maggiorini, D.: Procedural content generation for platformers: designing and testing FUN PLEdGE. In: Multimedia Tools and Applications, pp. 1–50 (2016)

    Google Scholar 

  31. Mazza, C., Ripamonti, L.A., Maggiorini, D., Gadia, D.: Fun pledge 2.0: a funny platformers levels generator (rhythm based). In: To be presented at CHItaly 2017: the Biannual Conference of the Italian SIGCHI Chapter, Cagliari, Italy, September 2017 (2017)

    Google Scholar 

  32. Stojanović, R., Čaplánová, A., Kovačević, Ž., Nemanja, N., Bundalo, Z.: Alternative approach to addressing infrastructure needs in biomedical engineering programs (case of emerging economies). Folia Medica Facultatis Medicinae Universitatis Saraeviensis, 50(1) (2015)

    Google Scholar 

  33. Conover, M.B.: Understanding Electrocardiography. Elsevier Health Sciences (2003)

    Google Scholar 

  34. Van Boxtel, A.: Facial EMG as a tool for inferring affective states. In: Proceedings of measuring behavior, pp. 104–108. Noldus Information Technology Wageningen (2010)

    Google Scholar 

  35. Critchley, H.D.: Electrodermal responses: what happens in the brain. Neuroscientist 8(2), 132–142 (2002)

    CrossRef  Google Scholar 

  36. Darwin, C., Ekman, P., Prodger, P.: The Expression of the Emotions in Man and Animals. Oxford University Press, USA (1998)

    Google Scholar 

  37. Venables, P.H., Christie, M.J.: Electrodermal activity. Tech. Psychophysiol. 54(3), 3–67 (1980)

    Google Scholar 

  38. Ds18b20 datasheet. https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf. Accessed 21 July 2017

  39. Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627–1639 (1964)

    CrossRef  Google Scholar 

  40. Lavielle, M.: Detection of multiple changes in a sequence of dependent variables. Stochast. Processes Appl. 83(1), 79–102 (1999)

    MathSciNet  CrossRef  MATH  Google Scholar 

  41. Hamilton, P.: Open source ECG analysis. In: Computers in Cardiology, pp. 101–104. IEEE (2002)

    Google Scholar 

  42. Loh, W.-Y.: Regression tress with unbiased variable selection and interaction detection. Statistica Sinica 12, 361–386 (2002)

    MathSciNet  MATH  Google Scholar 

  43. Bonab, H.R., Can, F.: A theoretical framework on the ideal number of classifiers for online ensembles in data streams. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 2053–2056. ACM (2016)

    Google Scholar 

  44. Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI, Stanford, CA, vol. 14, pp. 1137–1145 (1995)

    Google Scholar 

  45. Csikszentmihalyi, M.: Flow and the Psychology of Discovery and Invention. Harper Collins, New York (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Granato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Granato, M., Gadia, D., Maggiorini, D., Ripamonti, L.A. (2017). Emotions Detection Through the Analysis of Physiological Information During Video Games Fruition. In: Dias, J., Santos, P., Veltkamp, R. (eds) Games and Learning Alliance. GALA 2017. Lecture Notes in Computer Science(), vol 10653. Springer, Cham. https://doi.org/10.1007/978-3-319-71940-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71940-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71939-9

  • Online ISBN: 978-3-319-71940-5

  • eBook Packages: Computer ScienceComputer Science (R0)