Design Patterns for Augmented Reality Learning Games

  • Felix Emmerich
  • Roland KlemkeEmail author
  • Thomas Hummes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10653)


Augmented Reality (AR) is expected to receive a major uptake with the recent availability of high quality wearable AR devices such as Microsoft’s Hololens. However, the design of interaction with AR applications and games is still a field of experimentation and upcoming innovations in sensor technology provide new ways. With this paper, we aim to provide a step towards the structured use of design patterns for sensor-based AR games, which can also inform general application development in the field of AR.


Augmented reality Game-design patterns Interaction patterns Learning games 



Parts of this work were supported by the European Commission under the Horizon 2020 Programme under grant agreement No 687669 (WEKIT).


  1. 1.
    Lamantia, J.: Inside Out: Interaction Design for Augmented RealityGoogle Scholar
  2. 2.
    Papagiannakis, G., Singh, G., Magnenat-Thalmann, N.: A survey of mobile and wireless technologies for augmented reality systems (2008)Google Scholar
  3. 3.
    FitzGerald, E., Ferguson, R., Adams, A., Gaved, M., Mor, Y., Thomas, R.: Augmented reality and mobile learning: the state of the art. Int. J. Mob. Blended Learn. 5, 43–58 (2013)CrossRefGoogle Scholar
  4. 4.
    Calo, R., Denning, T., Friedman, B., Kohno, T., Magassa, L., McReynolds, E., Newell, B.C., Roesner, F., Woo, J.: Augmented Reality: A Technology and Policy Primer (2015)Google Scholar
  5. 5.
    Ternier, S., de Vries, F., Börner, D., Specht, M.: Mobile Augmented Reality with Audio. In: Cerone, A., Persico, D., Fernandes, S., Garcia-Perez, A., Katsaros, P., Shaikh, S.A., Stamelos, I. (eds.) SEFM 2012. LNCS, vol. 7991, pp. 53–63. Springer, Heidelberg (2014). Google Scholar
  6. 6.
    Benko, H., Holz, C., Sinclair, M., Ofek, E.: NormalTouch and texturetouch : high-fidelity 3d haptic shape rendering on handheld virtual reality controllers. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 717–728. ACM (2016)Google Scholar
  7. 7.
    Johnson, L., Smith, R., Willis, H., Levine, A., Haywood, K.: The 2011 Horizon Report. The New Media Consortium, Austin (2011)Google Scholar
  8. 8.
    Munnerley, D., Bacon, M., Wilson, A., Steele, J., Hedberg, J., Fitzgerald, R.: Confronting an augmented reality. Res. Lern. Technol. 20, 39–48 (2012)Google Scholar
  9. 9.
    You, S., Neumann, U.: Fusion of Vision and Gyro Tracking for Robust Augmented Reality Registration (2001)Google Scholar
  10. 10.
    Wetzel, R., McCall, R., Braun, A.-K., Broll, W.: Guidelines for designing augmented reality games. In: Proceedings of the 2008 Conference on Future Play: Research, Play, Share, pp. 173–180 (2008)Google Scholar
  11. 11.
    Schall, G., Wagner, D., Reitmayr, G., Taichmann, E., Wieser, M., Schmalstieg, D., Hofmann-Wellenhof, B.: Global pose estimation using multi-sensor fusion for outdoor augmented reality. In: Proceedings of the 2009 8th IEEE International Symposium on Mixed and Augmented Reality, pp. 153–162 (2009)Google Scholar
  12. 12.
    Furmanski, C., Azuma, R.T., Daily, M.: Augmented-reality visualizations guided by cognition: perceptual heuristics for combining visible and obscured information. In: Proceedings of the International Symposium on Mixed and Augmented Reality (ISMAR 2002), IEEE (2002)Google Scholar
  13. 13.
  14. 14.
    Borchers, J.O.: A pattern approach to interaction design. AI Soc. 15, 359–376 (2001)CrossRefGoogle Scholar
  15. 15.
    Björk, S., Lundgren, S., Holopainen, J.: Game design patterns. In: Level Up: Digital Games Research Conference 2003 (2003)Google Scholar
  16. 16.
    Wetzel, R.: A Case for Design Patterns supporting the Development of Mobile Mixed Reality Games. Found. Digit. Games (2013). Accessed 13 Nov 2017
  17. 17.
    Henderson, S.J., Feiner, S.: Evaluating the benefits of augmented reality for task localization in maintenance of an armored personnel carrier turret. In: IEEE International Symposium on Mixed and Augmented Reality 2009, pp. 135–144. IEEE (2009)Google Scholar
  18. 18.
    Olshannikova, E., Ometov, A., Koucheryavy, Y., Olsson, T.: Visualizing big data with augmented and virtual reality: challenges and research agenda. J. Big Data 2, 1–27 (2015)CrossRefGoogle Scholar
  19. 19.
    Niantic: Pokémon GO. Game [Android], 6 July 2016. Niantic, San Francisco, CA (2016). Played August 2016Google Scholar
  20. 20.
    Niantic: Ingress. Game [Android], 14 December 2013. Niantic, San Francisco, CA (2013). Played July 2016Google Scholar
  21. 21.
    Kors, M.J.L., Ferri, G., van der Spek, E.D., Ketel, C., Schouten, B.A.M.: A Breathtaking journey. In: Proceedings of 2016 Annual Symposium on Computer Interaction Play - CHI Play 2016, pp. 91–104 (2016)Google Scholar
  22. 22.
    Specht, M., Ternier, S., Greller, W.: Dimensions of mobile augmented reality for learning: a first inventory. J. Res. Cent. Educ. Technol. 7, 117–127 (2011)Google Scholar
  23. 23.
    Schmitz, B., Klemke, R., Specht, M.: Mobile Gaming Patterns and Their Impact on Learning Outcomes: A Literature Review. In: Ravenscroft, A., Lindstaedt, S., Kloos, C.D., Hernández-Leo, D. (eds.) EC-TEL 2012. LNCS, vol. 7563, pp. 419–424. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  24. 24.
    Dunleavy, M.: Design principles for augmented reality learning. TechTrends 58, 28–34 (2014)CrossRefGoogle Scholar
  25. 25.
    Antonaci, A., Klemke, R., Specht, M.: Towards Design Patterns for Augmented Reality Serious Games. In: Brown, Tom H., van der Merwe, Herman J. (eds.) mLearn 2015. CCIS, vol. 560, pp. 273–282. Springer, Cham (2015). CrossRefGoogle Scholar
  26. 26.
    McGee, K.: Patterns and computer game design innovation. In: Proceedings of the 4th Australasian Conference on Interactive Entertainment, RMIT University (2007)Google Scholar
  27. 27.
    Björk, S., Holopainen, J.: Patterns in Game Design (2005)Google Scholar
  28. 28.
    Kreimeier, B.: The Case For Game Design Patterns (2002)Google Scholar
  29. 29.
    Zagal, J.P., Mateas, M., Fernández-Vara, C., Hochhalter, B., Lichti, N.: Towards an ontological language for game analysis. In: Proceedings of DiGRA 2005 Conference, pp. 3–14 (2005)Google Scholar
  30. 30.
    Carvalho, M.B., Bellotti, F., Berta, R., De Gloria, A., Sedano, C.I., Hauge, J.B., Hu, J., Rauterberg, M.: An activity theory-based model for serious games analysis and conceptual design. Comput. Educ. 87, 166–181 (2015)CrossRefGoogle Scholar
  31. 31.
    Schmitz, B., Klemke, R., Specht, M.: An analysis of the educational potential of augmented reality games for learning. In: Specht, M., Multisilta, J. (eds.) Proceedings of the 11th International Conference on Mobile and Contextual Learning 2012, pp. 140–147. Helsinki, Finland (2011)Google Scholar
  32. 32.
    Sharma, P., Wild, F., Klemke, R., Helin, K., Azam, T.: D3.1 Requirement analysis and sensor specifications – First version (2016)Google Scholar
  33. 33.
    Azuma, R.T., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B.: Recent advances in augmented reality. IEEE Comput. Graph. Appl. 21, 34–47 (2001)CrossRefGoogle Scholar
  34. 34.
    Klemke, R., Limbu, B., Rasool, J.: WEKIT Framework & Training Methodology – First version (2016)Google Scholar
  35. 35.
    Ternier, S., Klemke, R., Kalz, M., Specht, M.: ARLearn augmented reality meets augmented virtuality. J. Univ. Comput. Sci. Technol. Learn. Across Phys. Virtual Spaces 18, 2143–2164 (2012). [Special issue]Google Scholar
  36. 36.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of GamedesignMediadesign HochschuleDüsseldorfGermany
  2. 2.Welten InstituteOpen University of the NetherlandsHeerlenNetherlands

Personalised recommendations