Skip to main content

An Ensemble Based Method for Predicting Emotion Intensity of Tweets

  • Conference paper
  • First Online:
Mining Intelligence and Knowledge Exploration (MIKE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10682))

Abstract

Recently, user generated contents have increased tremendously in social media. Twitter is a popular micro-blogging platform in which users share their feelings, opinions, feedback, etc. It has been observed that microblogs are often associated with emotions. Several studies have focused on assigning a given tweet to one of the available emotion categories (e.g., anger, fear, joy, sadness). It is often useful in applications to find the intensity of emotion in the tweets. The focus on identifying emotion intensity is less in the literature. In this paper, we focus on determining the level of emotion intensity in the tweets. We use an ensemble of three methods: Convolution Neural Networks (CNN) with word embedding features, XGBoost with word n-gram and char n-gram features, and Support Vector Regression (SVR) with lexicon and word embedding features. The final prediction of the given tweet is obtained by the average of predictions of individual methods in the ensemble. The performance of ensemble is better than the methods in the ensemble due to diverse features. Our experimental results outperform baseline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://nlp.stanford.edu/projects/glove/.

References

  1. Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis of twitter data. In: Proceedings of the Workshop on Languages in Social Media, pp. 30–38. Association for Computational Linguistics (2011)

    Google Scholar 

  2. Aman, S., Szpakowicz, S.: Identifying expressions of emotion in text. In: Matoušek, V., Mautner, P. (eds.) TSD 2007. LNCS (LNAI), vol. 4629, pp. 196–205. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74628-7_27

    Chapter  Google Scholar 

  3. Baccianella, S., Esuli, A., Sebastiani, F.: Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: LREC, vol. 10, pp. 2200–2204 (2010)

    Google Scholar 

  4. Bollen, J., Mao, H., Pepe, A.: Modeling public mood and emotion: twitter sentiment and socio-economic phenomena. In: ICWSM 2011, pp. 450–453 (2011)

    Google Scholar 

  5. Bravo-Marquez, F., Frank, E., Mohammad, S.M., Pfahringer, B.: Determining word-emotion associations from tweets by multi-label classification. In: WI 2016, pp. 536–539. IEEE Computer Society (2016)

    Google Scholar 

  6. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)

    Google Scholar 

  7. Das, D., Bandyopadhyay, S.: Identifying emotional expressions, intensities and sentence level emotion tags using a supervised framework. In: PACLIC, vol. 24, pp. 95–104 (2010)

    Google Scholar 

  8. Hagen, M., Potthast, M., Büchner, M., Stein, B.: Webis: an ensemble for twitter sentiment detection. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 582–589 (2015)

    Google Scholar 

  9. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177. ACM (2004)

    Google Scholar 

  10. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  11. Köper, M., Kim, E., Klinger, R.: IMS at EmoInt-2017: emotion intensity prediction with affective norms, automatically extended resources and deep learning. In: Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 50–57 (2017)

    Google Scholar 

  12. Kouloumpis, E., Wilson, T., Moore, J.D.: Twitter sentiment analysis: the good the bad and the omg! In: ICWSM 2011, vol. 164, pp. 538–541 (2011)

    Google Scholar 

  13. Kumar, A., Sebastian, T.M.: Sentiment analysis on twitter. Int. J. Comput. Sci. Issues (IJCSI) 9(4), 372 (2012)

    Google Scholar 

  14. Madisetty, S., Desarkar, M.S.: NSEmo at EmoInt-2017: an ensemble to predict emotion intensity in tweets. In: Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 219–224 (2017)

    Google Scholar 

  15. Mohammad, S.M.: Word affect intensities. arXiv preprint arXiv:1704.08798 (2017)

  16. Mohammad, S.M., Bravo-Marquez, F.: Emotion intensities in tweets. In: Proceedings of the Sixth Joint Conference on Lexical and Computational Semantics (*Sem), Vancouver, Canada (2017)

    Google Scholar 

  17. Mohammad, S.M., Bravo-Marquez, F.: WASSA-2017 shared task on emotion intensity. In: Proceedings of the Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (WASSA), Copenhagen, Denmark (2017)

    Google Scholar 

  18. Mohammad, S.M., Kiritchenko, S.: Using hashtags to capture fine emotion categories from tweets. Comput. Intell. 31(2), 301–326 (2015)

    Article  MathSciNet  Google Scholar 

  19. Mohammad, S.M., Kiritchenko, S., Zhu, X.: NRC-Canada: building the state-of-the-art in sentiment analysis of tweets. arXiv preprint arXiv:1308.6242 (2013)

  20. Mohammad, S.M., Turney, P.D.: Crowdsourcing a word-emotion association lexicon. Comput. Intell. 29(3), 436–465 (2013)

    Article  MathSciNet  Google Scholar 

  21. Niculescu-Mizil, A., Perlich, C., Swirszcz, G., Sindhwani, V., Liu, Y., Melville, P., Wang, D., Xiao, J., Hu, J., Singh, M., et al.: Winning the KDD cup orange challenge with ensemble selection. In: Proceedings of the 2009 International Conference on KDD-Cup 2009, vol. 7, pp. 23–34. JMLR.org (2009)

    Google Scholar 

  22. Nielsen, F.Å.: A new ANEW: evaluation of a word list for sentiment analysis in microblogs. arXiv preprint arXiv:1103.2903 (2011)

  23. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014). http://www.aclweb.org/anthology/D14-1162

  24. Petrovic, S., Osborne, M., Lavrenko, V.: The Edinburgh twitter corpus. In: Proceedings of the NAACL HLT 2010 Workshop on Computational Linguistics in a World of Social Media, pp. 25–26 (2010)

    Google Scholar 

  25. Poursepanj, H., Weissbock, J., Inkpen, D.: uOttawa: system description for SemEval 2013 task 2 sentiment analysis in twitter. In: SemEval@NAACL-HLT, pp. 380–383 (2013)

    Google Scholar 

  26. Purver, M., Battersby, S.: Experimenting with distant supervision for emotion classification. In: Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pp. 482–491. Association for Computational Linguistics (2012)

    Google Scholar 

  27. Roberts, K., Roach, M.A., Johnson, J., Guthrie, J., Harabagiu, S.M.: EmpaTweet: annotating and detecting emotions on twitter. In: LREC 2012, pp. 3806–3813 (2012)

    Google Scholar 

  28. Saif, H., He, Y., Alani, H.: Semantic sentiment analysis of twitter. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 508–524. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35176-1_32

    Chapter  Google Scholar 

  29. Thelwall, M., Buckley, K., Paltoglou, G.: Sentiment strength detection for the social web. J. Am. Soc. Inform. Sci. Technol. 63(1), 163–173 (2012)

    Article  Google Scholar 

  30. Töscher, A., Jahrer, M., Bell, R.M.: The BigChaos solution to the Netflix grand prize. Netflix prize documentation, pp. 1–52 (2009)

    Google Scholar 

  31. Wang, W., Chen, L., Thirunarayan, K., Sheth, A.P.: Harnessing twitter “big data” for automatic emotion identification. In: 2012 International Conference on Privacy, Security, Risk and Trust (PASSAT) and 2012 International Conference on Social Computing (SocialCom), pp. 587–592. IEEE (2012)

    Google Scholar 

  32. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 347–354. Association for Computational Linguistics (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreekanth Madisetty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Madisetty, S., Desarkar, M.S. (2017). An Ensemble Based Method for Predicting Emotion Intensity of Tweets. In: Ghosh, A., Pal, R., Prasath, R. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2017. Lecture Notes in Computer Science(), vol 10682. Springer, Cham. https://doi.org/10.1007/978-3-319-71928-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71928-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71927-6

  • Online ISBN: 978-3-319-71928-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics