Coordination Mechanisms, Cost-Sharing, and Approximation Algorithms for Scheduling

  • Ioannis Caragiannis
  • Vasilis Gkatzelis
  • Cosimo Vinci
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10660)


We reveal a connection between coordination mechanisms for unrelated machine scheduling and cost-sharing protocols. Using this connection, we interpret three coordination mechanisms from the recent literature as Shapley-value-based cost-sharing protocols, thus providing a unifying justification regarding why these mechanisms induce potential games. More importantly, this connection provides a template for designing novel coordination mechanisms, as well as approximation algorithms for the underlying optimization problem. The designer need only decide the total cost to be suffered on each machine, and then the Shapley value can be used to induce games guaranteed to possess a potential function; these games can, in turn, be used to design algorithms. To verify the power of this approach, we design a combinatorial algorithm that achieves an approximation guarantee of 1.81 for the problem of minimizing the total weighted completion time for unrelated machines. To the best of our knowledge, this is the best approximation guarantee among combinatorial polynomial-time algorithms for this problem.


  1. 1.
    Abed, F., Correa, J.R., Huang, C.-C.: Optimal coordination mechanisms for multi-job scheduling games. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 13–24. Springer, Heidelberg (2014). Google Scholar
  2. 2.
    Abed, F., Huang, C.-C.: Preemptive coordination mechanisms for unrelated machines. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 12–23. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  3. 3.
    Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Awerbuch, B., Azar, Y., Epstein, A., Mirrokni, V.S., Skopalik, A.: Fast convergence to nearly optimal solutions in potential games. In: Proceedings of the 9th ACM Conference on Electronic Commerce (EC), pp. 264–273 (2008)Google Scholar
  5. 5.
    Azar, Y., Fleischer, L., Jain, K., Mirrokni, V.S., Svitkina, Z.: Optimal coordination mechanisms for unrelated machine scheduling. Oper. Res. 63(3), 489–500 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bansal, N., Srinivasan, A., Svensson, O.: Lift-and-round to improve weighted completion time on unrelated machines. In: Proceedings of the 48th Annual ACM Symposium on Theory of Computing (STOC), pp. 156–167 (2016)Google Scholar
  7. 7.
    Bhattacharya, S., Im, S., Kulkarni, J., Munagala, K.: Coordination mechanisms from (almost) all scheduling policies. In: Proceedings of the 5th Conference on Innovations in Theoretical Computer Science (ITCS), pp. 121–134 (2014)Google Scholar
  8. 8.
    Caragiannis, I.: Efficient coordination mechanisms for unrelated machine scheduling. Algorithmica 66(3), 512–540 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Caragiannis, I., Fanelli, A.: An almost ideal coordination mechanism for unrelated machine scheduling. In: Gairing, M., Savani, R. (eds.) SAGT 2016. LNCS, vol. 9928, pp. 315–326. Springer, Heidelberg (2016). CrossRefGoogle Scholar
  10. 10.
    Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.: Tight bounds for selfish and greedy load balancing. Algorithmica 61(3), 606–637 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chen, H., Roughgarden, T., Valiant, G.: Designing network protocols for good equilibria. SIAM J. Comput. 39(5), 1799–1832 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. Theor. Comput. Sci. 410(36), 3327–3336 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Christodoulou, G., Gkatzelis, V., Sgouritsa, A.: Cost-sharing methods for scheduling games under uncertainty. In: Proceedings of the 18th ACM Conference on Economics and Computation (EC), pp. 441–458 (2017)Google Scholar
  14. 14.
    Christodoulou, G., Mehlhorn, K., Pyrga, E.: Improving the price of anarchy for selfish routing via coordination mechanisms. Algorithmica 69(3), 619–640 (2014)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Cole, R., Correa, J.R., Gkatzelis, V., Mirrokni, V., Olver, N.: Decentralized utilitarian mechanisms for scheduling games. Games Econ. Behav. 92, 306–326 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Correa, J.R., Queyranne, M.: Efficiency of equilibria in restricted uniform machine scheduling with total weighted completion time as social cost. Naval Res. Logist. (NRL) 59(5), 384–395 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    von Falkenhausen, P., Harks, T.: Optimal cost sharing for resource selection games. Math. Oper. Res. 38(1), 184–208 (2013)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Gkatzelis, V., Kollias, K., Roughgarden, T.: Optimal cost-sharing in general resource selection games. Oper. Res. 64(6), 1230–1238 (2016)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gopalakrishnan, R., Marden, J.R., Wierman, A.: Potential games are necessary to ensure pure Nash equilibria in cost sharing games. Math. Oper. Res. 39(4), 1252–1296 (2014)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Hoeksma, R., Uetz, M.: The price of anarchy for minsum related machine scheduling. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp. 261–273. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  21. 21.
    Hoogeveen, H., Schuurman, P., Woeginger, G.J.: Non-approximability results for scheduling problems with minsum criteria. INFORMS J. Comput. 13(2), 157–168 (2001)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Immorlica, N., Li, L.E., Mirrokni, V.S., Schulz, A.S.: Coordination mechanisms for selfish scheduling. Theoret. Comput. Sci. 410(17), 1589–1598 (2009)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kollias, K.: Nonpreemptive coordination mechanisms for identical machines. Theory Comput. Syst. 53(3), 424–440 (2013)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kollias, K., Roughgarden, T.: Restoring pure equilibria to weighted congestion games. ACM Trans. Econ. Comput. 3(4), 21:1–21:24 (2015)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Leung, J.Y. (ed.): Handbook of Scheduling - Algorithms, Models, and Performance Analysis. Chapman and Hall/CRC, Boca Raton (2004)MATHGoogle Scholar
  26. 26.
    Li, S.: Scheduling to minimize total weighted completion time via time-indexed linear programming relaxations. CoRR abs/1707.08039 (2017)Google Scholar
  27. 27.
    Marden, J.R., Wierman, A.: Distributed welfare games. Oper. Res. 61(1), 155–168 (2013)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Mosk-Aoyama, D., Roughgarden, T.: Worst-case efficiency analysis of queueing disciplines. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 546–557. Springer, Heidelberg (2009). CrossRefGoogle Scholar
  29. 29.
    Moulin, H.: The price of anarchy of serial, average and incremental cost sharing. Econ. Theor. 36(3), 379–405 (2008)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Sethuraman, J., Squillante, M.: Optimal scheduling of multiclass parallel machines. In: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 963–964 (1999)Google Scholar
  31. 31.
    Shapley, L.S.: Additive and Non-additive Set Functions. Princeton University, Princeton (1953)Google Scholar
  32. 32.
    Skutella, M.: Convex quadratic and semidefinite programming relaxations in scheduling. J. ACM 48(2), 206–242 (2001)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Smith, W.: Various optimizers for single stage production. Naval Res. Logist. Quart. 3(1–2), 59–66 (1956)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ioannis Caragiannis
    • 1
  • Vasilis Gkatzelis
    • 2
  • Cosimo Vinci
    • 3
  1. 1.University of PatrasRion-PatrasGreece
  2. 2.Drexel UniversityPhiladelphiaUSA
  3. 3.Gran Sasso Science InstituteL’AquilaItaly

Personalised recommendations