Abstract
We consider the problem of maximizing the spread of influence in a social network by choosing a fixed number of initial seeds — a central problem in the study of network cascades. The majority of existing work on this problem, formally referred to as the influence maximization problem, is designed for submodular cascades. Despite the empirical evidence that many cascades are non-submodular, little work has been done focusing on non-submodular influence maximization.
We propose a new heuristic for solving the influence maximization problem and show via simulations on real-world and synthetic networks that our algorithm outputs more influential seed sets than the state-of-the-art greedy algorithm in many natural cases, with average improvements of 7% for submodular cascades, and 55% for non-submodular cascades. Our heuristic uses a dynamic programming approach on a hierarchical decomposition of the social network to leverage the relation between the spread of cascades and the community structure of social networks. We present “worst-case” theoretical results proving that in certain settings our algorithm outputs seed sets that are a factor of \(\varTheta (\sqrt{n})\) more influential than those of the greedy algorithm, where n is the number of nodes in the network.
The full version is located at https://arxiv.org/abs/1609.06520.
The authors gratefully acknowledge the support of the National Science Foundation under Career Award 1452915 and AifT Award 1535912.
This is a preview of subscription content, access via your institution.
Buying options



Notes
- 1.
See the full version for all of these results at https://arxiv.org/abs/1609.06520.
References
Arora, S., Ge, R., Sachdeva, S., Schoenebeck, G.: Finding overlapping communities in social networks: toward a rigorous approach. In: ACM EC 2012 (2012)
Arthur, W.B.: Competing technologies, increasing returns, and lock-in by historical events. Econ. J. 99(394), 116–131 (1989). http://www.jstor.org/stable/2234208
Backstrom, L., Huttenlocher, D.P., Kleinberg, J.M., Lan, X.: Group formation in large social networks: membership, growth, and evolution. In: KDD 2006, pp. 44–54 (2006)
Banerjee, A., Chandrasekhar, A.G., Duflo, E., Jackson, M.O.: The diffusion of microfinance. Science, 341(6144) (2013)
Borgs, C., Brautbar, M., Chayes, J.T., Lucier, B.: Maximizing social influence in nearly optimal time. In: SODA 2014 (2014)
Brown, J.J., Reingen, P.H.: Social ties and word-of-mouth referral behavior. J. Consum. Res. 14, 350–362 (1987)
Centola, D.: The spread of behavior in an online social network experiment. Science 329(5996), 1194–1197 (2010)
Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: KDD 2009. ACM (2009)
Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks under the linear threshold model. In: ICDM 2010, pp. 88–97. IEEE (2010)
Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)
Cohen, E., Delling, D., Pajor, T., Werneck, R.F.: Sketch-based influence maximization and computation: scaling up with guarantees. In: CIKM 2014, pp. 629–638. ACM (2014)
Coleman, J., Katz, E., Menzel, H.: The diffusion of an innovation among physicians. Sociometry 20, 253–270 (1957)
Conley, T.G., Udry, C.R.: Learning about a new technology: pineapple in Ghana. Am. Econ. Rev. 100(1), 35–69 (2010)
Cordasco, G., Gargano, L., Mecchia, M., Rescigno, A.A., Vaccaro, U.: Discovering small target sets in social networks: a fast and effective algorithm. arXiv preprint arXiv:1610.03721 (2016)
Dasgupta, S.: A cost function for similarity-based hierarchical clustering. In: STOC 2016, pp. 118–127. ACM, New York, NY, USA (2016). http://doi.acm.org/10.1145/2897518.2897527
Domingos, P., Richardson, M.: Mining the network value of customers. In: 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 57–66 (2001)
Goyal, A., Lu, W., Lakshmanan, L.V.: Celf++: optimizing the greedy algorithm for influence maximization in social networks. In: WWW 2011. pp. 47–48. ACM (2011)
Goyal, A., Lu, W., Lakshmanan, L.V.: Simpath: an efficient algorithm for influence maximization under the linear threshold model. In: ICDM 2011, pp. 211–220. IEEE (2011)
Goyal, S., Kearns, M.: Competitive contagion in networks. In: STOC 2012, pp. 759–774 (2012)
Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978). http://www.journals.uchicago.edu/doi/abs/10.1086/226707
Karypis, G., Kumar, V.: METIS: unstructured graph partitioning and sparse matrix ordering system, Version 4.0. (2009). http://www.cs.umn.edu/~metis
Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. In: KDD 2003, pp. 137–146 (2003)
Kempe, D., Kleinberg, J., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468_91
Kimura, M., Saito, K.: Tractable models for information diffusion in social networks. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS, vol. 4213, pp. 259–271. Springer, Heidelberg (2006). https://doi.org/10.1007/11871637_27
Kleinberg, J.: Small-world phenomena and the dynamics of information. In: NIPS 2002, vol. 1, pp. 431–438 (2002)
Lerman, K., Ghosh, R.: Information contagion: an empirical study of the spread of news on Digg and Twitter social networks. ICWSM 10, 90–97 (2010)
Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. In: ACM EC 2006, pp. 228–237 (2006)
Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: KDD 2007, pp. 420–429. ACM (2007)
Leskovec, J., Krevl, A.: SNAP datasets: stanford large network dataset collection, June 2014. http://snap.stanford.edu/data
Lucier, B., Oren, J., Singer, Y.: Influence at scale: distributed computation of complex contagion in networks. In: KDD 2015, pp. 735–744. ACM (2015)
Morris, S.: Contagion. Rev. Econ. Stud. 67(1), 57–78 (2000). http://restud.oxfordjournals.org/content/67/1/57.abstract
Mossel, E., Roch, S.: Submodularity of influence in social networks: from local to global. SIAM J. Comput. 39(6), 2176–2188 (2010)
Nguyen, H., Zheng, R.: Influence spread in large-scale social networks – a belief propagation approach. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS, vol. 7524, pp. 515–530. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33486-3_33
Paluck, E.L., Shepherd, H., Aronow, P.M.: Changing climates of conflict: a social network experiment in 56 schools. Proc. Nat. Acad. Sci. 113(3), 566–571 (2016). http://www.pnas.org/content/113/3/566.abstract
Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: KDD 2012, pp. 61–70 (2002)
Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics : idioms, political hashtags, and complex contagion on twitter. In: WWW 2011. pp. 695–704. ACM (2011). http://dl.acm.org/citation.cfm?id=1963503
Schoenebeck, G., Tao, B.: Beyond worst-case (in)approximability of nonsubmodular influence maximization (2017). http://www-personal.umich.edu/bstao/
Seeman, L., Singer, Y.: Adaptive seeding in social networks. In: FOCS 2013, pp. 459–468. IEEE (2013)
Tang, Y., Xiao, X., Shi, Y.: Influence maximization: near-optimal time complexity meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp. 75–86. ACM (2014)
Tullock, G.: Towards a theory of the rent-seeking society. In: chap. Efficient Rent Seeking. Texas A&M University Press (1980)
Wang, Y., Cong, G., Song, G., Xie, K.: Community-based greedy algorithm for mining top-k influential nodes in mobile social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1039–1048. ACM (2010)
Watts, D.J.: A simple model of global cascades on random networks. Proc. Nat. Acad. Sci. 99(9), 5766–5771 (2002). http://www.pnas.org/content/99/9/5766.abstract
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Angell, R., Schoenebeck, G. (2017). Don’t Be Greedy: Leveraging Community Structure to Find High Quality Seed Sets for Influence Maximization. In: R. Devanur, N., Lu, P. (eds) Web and Internet Economics. WINE 2017. Lecture Notes in Computer Science(), vol 10660. Springer, Cham. https://doi.org/10.1007/978-3-319-71924-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-71924-5_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-71923-8
Online ISBN: 978-3-319-71924-5
eBook Packages: Computer ScienceComputer Science (R0)