Beyond Worst-Case (In)approximability of Nonsubmodular Influence Maximization

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10660)

Abstract

We consider the problem of maximizing the spread of influence in a social network by choosing a fixed number of initial seeds, formally referred to as the influence maximization problem. It admits a \((1-1/e)\)-factor approximation algorithm if the influence function is submodular. Otherwise, in the worst case, the problem is NP-hard to approximate to within a factor of \(N^{1-\varepsilon }\), where N is the number of vertices in the graph. This paper studies whether this worst-case hardness result can be circumvented by making assumptions about either the underlying network topology or the cascade model. All of our assumptions are motivated by many real life social network cascades.

First, we present strong inapproximability results for a very restricted class of networks called the (stochastic) hierarchical blockmodel, a special case of the well-studied (stochastic) blockmodel in which relationships between blocks admit a tree structure. We also provide a dynamic-program based polynomial time algorithm which optimally computes a directed variant of the influence maximization problem on hierarchical blockmodel networks. Our algorithm indicates that the inapproximability result is due to the bidirectionality of influence between agent-blocks.

Second, we present strong inapproximability results for a class of influence functions that are “almost” submodular, called 2-quasi-submodular. Our inapproximability results hold even for any 2-quasi-submodular f fixed in advance. This result also indicates that the “threshold” between submodularity and nonsubmodularity is sharp, regarding the approximability of influence maximization.

References

  1. 1.
    Angell, R., Schoenebeck, G.: Don’t be greedy: leveraging community structure to find high quality seed sets for influence maximization. In: WINE (2017)Google Scholar
  2. 2.
    Arthur, W.B.: Competing technologies, increasing returns, and lock-in by historical events. Econ. J. 99(394), 116–131 (1989). http://www.jstor.org/stable/2234208 CrossRefGoogle Scholar
  3. 3.
    Backstrom, L., Huttenlocher, D.P., Kleinberg, J.M., Lan, X.: Group formation in large social networks: membership, growth, and evolution. In: ACM SIGKDD (2006)Google Scholar
  4. 4.
    Banerjee, A., Chandrasekhar, A.G., Duflo, E., Jackson, M.O.: The diffusion of microfinance. Science 341(6144), 1236498 (2013)CrossRefGoogle Scholar
  5. 5.
    Bass, F.M.: A new product growth for model consumer durables. Manag. Sci. 15(5), 215–227 (1969)CrossRefMATHGoogle Scholar
  6. 6.
    Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social networks. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 306–311. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77105-0_31 CrossRefGoogle Scholar
  7. 7.
    Borgs, C., Brautbar, M., Chayes, J.T., Lucier, B.: Influence maximization in social networks: towards an optimal algorithmic solution. CoRR (2012)Google Scholar
  8. 8.
    Brown, J.J., Reingen, P.H.: Social ties and word-of-mouth referral behavior. J. Consum. Res. 14, 350–362 (1987)CrossRefGoogle Scholar
  9. 9.
    Centola, D.: The spread of behavior in an online social network experiment. Science 329(5996), 1194–1197 (2010)CrossRefGoogle Scholar
  10. 10.
    Chen, N.: On the approximability of influence in social networks. SIAM J. Discret. Math. 23(3), 1400–1415 (2009)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: ACM SIGKDD, pp. 199–208. ACM (2009)Google Scholar
  12. 12.
    Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks under the linear threshold model. In: 2010 IEEE International Conference on Data Mining, pp. 88–97. IEEE (2010)Google Scholar
  13. 13.
    Clauset, A., Moore, C., Newman, M.E.: Hierarchical structure and the prediction of missing links in networks. Nature 453(7191), 98–101 (2008)CrossRefGoogle Scholar
  14. 14.
    Coleman, J., Katz, E., Menzel, H.: The diffusion of an innovation among physicians. Sociometry 20, 253–270 (1957)CrossRefGoogle Scholar
  15. 15.
    Conley, T.G., Udry, C.R.: Learning about a new technology: Pineapple in Ghana. Am. Econ. Rev. 100(1), 35–69 (2010)CrossRefGoogle Scholar
  16. 16.
    DiMaggio, P.: Structural analysis of organizational fields: a blockmodel approach. Res. Organ. Behav. 8, 335–370 (1986)Google Scholar
  17. 17.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: ACM SIGKDD (2001)Google Scholar
  18. 18.
    Goldenberg, J., Libai, B., Muller, E.: Using complex systems analysis to advance marketing theory development: modeling heterogeneity effects on new product growth through stochastic cellular automata. Acad. Mark. Sci. Rev. 9(3), 1–18 (2001)Google Scholar
  19. 19.
    Goyal, S., Kearns, M.: Competitive contagion in networks. In: STOC, pp. 759–774 (2012)Google Scholar
  20. 20.
    Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978). http://www.journals.uchicago.edu/doi/abs/10.1086/226707 CrossRefGoogle Scholar
  21. 21.
    He, X., Kempe, D.: Robust influence maximization. In: ACM SIGKDD (2016)Google Scholar
  22. 22.
    Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: first steps. Soc. Netw. 5(2), 109–137 (1983)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Jackson, M.O.: Social and Economic Networks. Princeton University Press, Princeton (2008)MATHGoogle Scholar
  24. 24.
    Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. In: ACM SIGKDD, pp. 137–146 (2003)Google Scholar
  25. 25.
    Kempe, D., Kleinberg, J., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005).  https://doi.org/10.1007/11523468_91 CrossRefGoogle Scholar
  26. 26.
    Lerman, K., Ghosh, R.: Information contagion: an empirical study of the spread of news on Digg and Twitter social networks. In: ICWSM, pp. 90–97 (2010)Google Scholar
  27. 27.
    Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. In: EC (2006)Google Scholar
  28. 28.
    Lucier, B., Oren, J., Singer, Y.: Influence at scale: distributed computation of complex contagion in networks. In: ACM SIGKDD, pp. 735–744. ACM (2015)Google Scholar
  29. 29.
    Lyzinski, V., Tang, M., Athreya, A., Park, Y., Priebe, C.E.: Community detection and classification in hierarchical stochastic blockmodels. arXiv (2015)Google Scholar
  30. 30.
    Mahajan, V., Muller, E., Bass, F.M.: New product diffusion models in marketing: a review and directions for research. J. Mark. 54, 1–26 (1990)CrossRefGoogle Scholar
  31. 31.
    Morris, S.: Contagion. Rev. Econ. Stud. 67(1), 57–78 (2000)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Mossel, E., Roch, S.: Submodularity of influence in social networks: from local to global. SIAM J. Comput. 39(6), 2176–2188 (2010)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: ACM SIGKDD, pp. 61–70 (2002)Google Scholar
  34. 34.
    Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on Twitter. In: WWW, pp. 695–704. ACM (2011)Google Scholar
  35. 35.
    Seeman, L., Singer, Y.: Adaptive seeding in social networks. In: FOCS, pp. 459–468. IEEE (2013)Google Scholar
  36. 36.
    Horel, T., Singer, Y.: Maximization of approximately submodular functions. In: NIPS (2016). http://papers.nips.cc/paper/6236-maximization-of-approximately-submodular-functions.pdf
  37. 37.
    Watts, D.J.: A simple model of global cascades on random networks. Proc. Nat. Acad. Sci. 99(9), 5766–5771 (2002). http://www.pnas.org/content/99/9/5766.abstract MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    White, H.C., Boorman, S.A., Breiger, R.L.: Social structure from multiple networks. I. Blockmodels of roles and positions. Am. J. Sociol. 81(4), 730–780 (1976)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of MichiganAnn ArborUSA

Personalised recommendations