Routing Games over Time with FIFO Policy

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10660)

Abstract

We study atomic routing games where every agent travels both along its decided edges and through time. The agents arriving on an edge are first lined up in a first-in-first-out queue and may wait: an edge is associated with a capacity, which defines how many agents-per-time-step can pop from the queue’s head and enter the edge, to transit for a fixed delay. We show that the best-response optimization problem is not approximable, and that deciding the existence of a Nash equilibrium is complete for the second level of the polynomial hierarchy. Then, we drop the rationality assumption, introduce a behavioral concept based on GPS navigation, and study its worst-case efficiency ratio to coordination.

Keywords

Routing games over time Complexity Price of Anarchy 

Notes

Acknowledgments

I am grateful to the anonymous reviewers for their work. This work was supported by grant KAKENHI 15H01703.

References

  1. [AAE05]
    Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 57–66. ACM (2005)Google Scholar
  2. [AK97]
    Alimonti, P., Kann, V.: Hardness of approximating problems on cubic graphs. In: Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp. 288–298. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-62592-5_80 CrossRefGoogle Scholar
  3. [AU09]
    Anshelevich, E., Ukkusuri, S.: Equilibria in dynamic selfish routing. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 171–182. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04645-2_16 CrossRefGoogle Scholar
  4. [BFA15]
    Bhaskar, U., Fleischer, L., Anshelevich, E.: A stackelberg strategy for routing flow over time. Games Econ. Behav. 92, 232–247 (2015)MathSciNetCrossRefMATHGoogle Scholar
  5. [CCCW17a]
    Cao, Z., Chen, B., Chen, X., Wang, C.: A network game of dynamic traffic. CoRR, abs/1705.01784 (2017)Google Scholar
  6. [CCCW17b]
    Cao, Z., Chen, B., Chen, X., Wang, C.: A network game of dynamic traffic. In: Proceedings of the 2017 ACM Conference on Economics and Computation, EC 2017, pp. 695–696. ACM (2017)Google Scholar
  7. [CK05]
    Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 67–73. ACM (2005)Google Scholar
  8. [Cre97]
    Crescenzi, P.: A short guide to approximation preserving reductions. In: Proceedings of the Twelfth Annual IEEE Conference on (Formerly: Structure in Complexity Theory Conference) Computational Complexity, pp. 262–273. IEEE (1997)Google Scholar
  9. [FK96]
    Feige, U., Kilian, J.: Zero knowledge and the chromatic number. In: Proceedings of the Eleventh Annual IEEE Conference on Computational Complexity, pp. 278–287. IEEE (1996)Google Scholar
  10. [FOV08]
    Farzad, B., Olver, N., Vetta, A.: A priority-based model of routing. Chic. J. Theoret. Comput. Sci. 1 (2008)Google Scholar
  11. [GJ79]
    Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman, San Francisco (1979)MATHGoogle Scholar
  12. [GJS74]
    Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete problems. In: Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, STOC 1974, pp. 47–63. ACM (1974)Google Scholar
  13. [HHP06]
    Harks, T., Heinz, S., Pfetsch, M.E.: Competitive online multicommodity routing. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, pp. 240–252. Springer, Heidelberg (2007).  https://doi.org/10.1007/11970125_19 CrossRefGoogle Scholar
  14. [HHP09]
    Harks, T., Heinz, S., Pfetsch, M.E.: Competitive online multicommodity routing. Theory Comput. Syst. 45(3), 533–554 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. [HMRT09]
    Hoefer, M., Mirrokni, V.S., Röglin, H., Teng, S.-H.: Competitive routing over time. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 18–29. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10841-9_4 CrossRefGoogle Scholar
  16. [HMRT11]
    Hoefer, M., Mirrokni, V.S., Röglin, H., Teng, S.-H.: Competitive routing over time. Theoret. Comput. Sci. 412(39), 5420–5432 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. [HPSVK16]
    Harks, T., Peis, B., Schmand, D., Koch, L.V.: Competitive packet routing with priority lists. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 58. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)Google Scholar
  18. [Kar72]
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, Heidelberg (1972).  https://doi.org/10.1007/978-1-4684-2001-2_9 CrossRefGoogle Scholar
  19. [KP99]
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-49116-3_38 CrossRefGoogle Scholar
  20. [KS09]
    Koch, R., Skutella, M.: Nash equilibria and the price of anarchy for flows over time. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 323–334. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04645-2_29 CrossRefGoogle Scholar
  21. [KS11]
    Koch, R., Skutella, M.: Nash equilibria and the price of anarchy for flows over time. Theory Comput. Syst. 49(1), 71–97 (2011)MathSciNetCrossRefMATHGoogle Scholar
  22. [MLS10]
    Macko, M., Larson, K., Steskal, Ľ.: Braess’s paradox for flows over time. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 262–275. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16170-4_23 CrossRefGoogle Scholar
  23. [MLS13]
    Macko, M., Larson, K., Steskal, L.: Braess’s paradox for flows over time. Theory Comput. Syst. 53(1), 86–106 (2013)MathSciNetCrossRefMATHGoogle Scholar
  24. [NRTV07]
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory, vol. 1. Cambridge University Press, Cambridge (2007)CrossRefMATHGoogle Scholar
  25. [PY91]
    Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)MathSciNetCrossRefMATHGoogle Scholar
  26. [Rou05]
    Roughgarden, T.: Selfish Routing and the Price of Anarchy, vol. 174. MIT press, Cambridge (2005)MATHGoogle Scholar
  27. [Rou09]
    Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 513–522. ACM (2009)Google Scholar
  28. [RT02]
    Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM (JACM) 49(2), 236–259 (2002)MathSciNetCrossRefMATHGoogle Scholar
  29. [War52]
    Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng. 1(3), 325–362 (1952)Google Scholar
  30. [WBK15]
    Werth, T.L., Büttner, S., Krumke, S.O.: Robust bottleneck routing games. Networks 66(1), 57–66 (2015)MathSciNetCrossRefGoogle Scholar
  31. [WHK14]
    Werth, T.L., Holzhauser, M., Krumke, S.O.: Atomic routing in a deterministic queuing model. Oper. Res. Perspect. 1(1), 18–41 (2014)MathSciNetCrossRefGoogle Scholar
  32. [Zuc06]
    Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, pp. 681–690. ACM (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Takayuki Ito LaboratoryNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations