On Strong Equilibria and Improvement Dynamics in Network Creation Games

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10660)


We study strong equilibria in network creation games. These form a classical and well-studied class of games where a set of players form a network by buying edges to their neighbors at a cost of a fixed parameter \(\alpha \). The cost of a player is defined to be the cost of the bought edges plus the sum of distances to all the players in the resulting graph. We identify and characterize various structural properties of strong equilibria, which lead to a characterization of the set of strong equilibria for all \(\alpha \) in the range (0, 2). For \(\alpha > 2\), Andelman et al. [4] prove that a star graph in which every leaf buys one edge to the center node is a strong equilibrium, and conjecture that in fact any star is a strong equilibrium. We resolve this conjecture in the affirmative. Additionally, we show that when \(\alpha \) is large enough (\(\ge 2n\)) there exist non-star trees that are strong equilibria. For the strong price of anarchy, we provide precise expressions when \(\alpha \) is in the range (0, 2), and we prove a lower bound of 3/2 when \(\alpha \ge 2\). Lastly, we aim to characterize under which conditions (coalitional) improvement dynamics may converge to a strong equilibrium. To this end, we study the (coalitional) finite improvement property and (coalitional) weak acyclicity property. We prove various conditions under which these properties do and do not hold. Some of these results also hold for the class of pure Nash equilibria.



The first author was partially supported by the NCN grant 2014/13/B/ST6/01807 and the second author by the NWO grant 612.001.352. We thank Krzysztof R. Apt for many useful suggestions concerning the results and organization of this paper. We thank Mateusz Skomra for many helpful discussions and feedback.


  1. 1.
    Albers, S., Eilts, S., Even-Dar, E., Mansour, Y., Roditty, L.: On Nash equilibria for a network creation game. In: Proceedings of the 17th Symposium on Discrete Algorithms (SODA), pages 89–98. SIAM (2006)Google Scholar
  2. 2.
    Alon, N., Demaine, E.D., Hajiaghayi, M.T., Leighton, T.: Basic network creation games. SIAM J. Discrete Math. 27(2), 656–668 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Àlvarez, A., Messegué, A.: Selfish network creation with non-uniform edge cost (2017). arXiv: 1706.09132
  4. 4.
    Andelman, N., Feldman, M., Mansour, Y.: Strong price of anarchy. Games Econ. Behav. 65(2), 289–317 (2009)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Aumann, R.J.: Acceptable points in general cooperative N-person games. In: Luce, R.D., Tucker, A.W. (eds) Contribution to the Theory of Games, vol. IV (Annals of Mathematical Study 40), pp. 287–324. Princeton University Press (1959)Google Scholar
  6. 6.
    Bala, V., Goyal, S.: A noncooperative model of network formation. Econometrica 68(5), 1181–1229 (2000)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bala, V., Goyal, S.: A strategic analysis of network reliability. Rev. Econ. Des. 5(3), 205–228 (2000)Google Scholar
  8. 8.
    Billand, P., Bravard, C., Sarangi, S.: Existence of Nash networks in one-way flow models. Econ. Theor. 37(3), 491–507 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Brandes, U., Hoefer, M., Nick, B.: Network creation games with disconnected equilibria. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 394–401. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-92185-1_45 CrossRefGoogle Scholar
  10. 10.
    Chauhan, A., Lenzner, P., Melnichenko, A., Molitor, L.: Selfish network creation with non-uniform edge cost (2017). arXiv:1706.10200
  11. 11.
    Corbo, J., Parkes, D.C.: The price of selfish behavior in bilateral network formation. In: Proceedings of the 24th Symposium on Principles of Distributed Computing (PODC), pp. 99–107. ACM (2005)Google Scholar
  12. 12.
    Demaine, E.D., Hajiaghayi, M., Mahini, H., Zadimoghaddam, M.: The price of anarchy in network creation games. ACM Trans. Algorithms 8(2), 13:1–13:3 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Derks, J., Kuipers, J., Tennekes, M., Thuijsman, F.: Local dynamics in network formation. Technical report, Maastricht University (2008)Google Scholar
  14. 14.
    Derks, J., Kuipers, J., Tennekes, M., Thuijsman, F.: Existence of Nash networks in the one-way flow model of network formation. Model. Comput. Optim. 6, 9 (2009)MathSciNetMATHGoogle Scholar
  15. 15.
    Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.H., Shenker, S.: On a network creation game. In: Proceedings of the 22nd Symposium on Principles of Distributed Computing (PODC), pp. 347–351. ACM (2003)Google Scholar
  16. 16.
    Galeotti, A.: One-way flow networks: the role of heterogeneity. Econ. Theor. 29(1), 163–179 (2006)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Haller, H., Kamphorst, J., Sarangi, S.: (non-)existence and scope of Nash networks. Econ. Theor. 31(3), 597–604 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Haller, H., Sarangi, S.: Nash networks with heterogeneous links. Math. Soc.Sci. 50(2), 181–201 (2005)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kawald, B., Lenzner, P.: On dynamics in selfish network creation. In: Proceedings of the 25th Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 83–92. ACM (2013)Google Scholar
  20. 20.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-49116-3_38 CrossRefGoogle Scholar
  21. 21.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. Comput. Sci. Rev. 3(2), 65–69 (2009)CrossRefMATHGoogle Scholar
  22. 22.
    Lenzner, P.: On dynamics in basic network creation games. In: Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 254–265. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24829-0_23 CrossRefGoogle Scholar
  23. 23.
    Lenzner, P.: Greedy selfish network creation. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 142–155. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35311-6_11 CrossRefGoogle Scholar
  24. 24.
    Mamageishvili, A., Mihalák, M., Müller, D.: Tree Nash equilibria in the network creation game. Internet Math. 11(4–5), 472–486 (2015)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Messegué, B.: The price of anarchy in network creation. Master’s thesis, Universitat Politècnica de Catalunya (2014)Google Scholar
  26. 26.
    Mihalák, M., Schlegel, J.C.: Asymmetric swap-equilibrium: a unifying equilibrium concept for network creation games. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 693–704. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32589-2_60 CrossRefGoogle Scholar
  27. 27.
    Mihalák, M., Schlegel, J.C.: The price of anarchy in network creation games is (mostly) constant. Theor. Comput. Syst. (TOCS) 53(1), 53–72 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Mathematics, Informatics and Mechanics, Institute of InformaticsUniversity of WarsawWarsawPoland
  2. 2.Networks and Optimization GroupCentrum Wiskunde and Informatica (CWI)AmsterdamThe Netherlands

Personalised recommendations