Nutritional and Metabolic Disorders in Dairy Goats

  • João SimõesEmail author
  • Carlos Gutiérrez


This chapter aims to describe significant aspects of the most common nutritional/metabolic diseases caused by insufficient or disbalanced nutrients intake, such as carbohydrates, proteins, vitamins, and macro or trace minerals, and their repercussion in goat metabolism. Goats are opportunistic feeding behavior animals, choosing the best nutrients in both hard environments or even in feed availability periods. In some conditions, e.g., poor quality forages in nutrients, and/or when energy or nutrient requirements overpasses their intake capacity and availability, goats may not keep metabolic homeostasis. Pregnant toxemia, urolithiasis, polioencephalomalacia, and selenium or vitamin E deficiency are major diseases with impact in production, reproduction and/or health in both low- and high-producing goats or their kids. İn high-producing dairy goats, due to their higher nutritional demands, increased incidence of the called “production diseases” is observed. Subacute ruminal acidosis, lactational ketosis, hepatic lipidose, hypocalcemia and low milk fat syndrome are also major problem in dairy herds to require special attention. Risk factors of these disorders should be taken into account in nutritional and feed management programs. A holistic approach regarding these programs and herd health management are crucial to control or prevent nutritional and metabolic diseases in farms.


  1. Abdela N (2016) Sub-acute ruminal acidosis (SARA) and its consequence in dairy cattle: a review of past and recent research at global prospective. Achievem Life Sci 10(2):187–196CrossRefGoogle Scholar
  2. Aghwan ZA, Alimon AR, Goh YM et al (2014) Fatty acid profiles of supraspinatus, longissimus lumborum and semitendinosus muscles and serum in Kacang goats supplemented with inorganic selenium and iodine. Asian-Australas J Anim Sci 27(4):543–550PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aghwan ZA, Sazili AQ, Kadhim KK et al (2016) Effects of dietary supplementation of selenium and iodine on growth performance, carcass characteristics and histology of thyroid gland in goats. Anim Sci 87(5):69–690Google Scholar
  4. Albay MK, Karakurum MC, Sahinduran S et al (2014) Selected serum biochemical parameters and acute phase protein levels in a herd of Saanen goats showing signs of pregnancy toxaemia. Vet Med 59(7):336–342Google Scholar
  5. Alves de Oliveira L, Jean-Blain C, Durix A et al (1996) Use of a semi-continuous culture system (RUSITEC) to study the effect of pH on microbial metabolism of thiamin (Vitamin B1). Arch Tierernahr 49(3):193–202PubMedCrossRefGoogle Scholar
  6. Amarpal Kinjavdekar P, Aithal HP, Pawde AM et al (2013) A retrospective study on the prevalence of obstructive urolithiasis in domestic animals during a period of 10 years. Adv Anim Vet Sci 1(3):88–92Google Scholar
  7. Amat S, McKinnon JJ, Olkowski AA et al (2013a) Understanding the role of sulfur-thiamine interaction in the pathogenesis of sulfur-induced polioencephalomalacia in beef cattle. Res Vet Sci 95(3):1081–1087PubMedCrossRefGoogle Scholar
  8. Amat S, Olkowski AA, Atila M et al (2013b) A review of polioencephalomalacia in ruminants: is the development of malacic lesions associated with excess sulfur intake independent of thiamine deficiency? Vet Med Anim Sci 1(1):1. CrossRefGoogle Scholar
  9. Andrews A (1997) Pregnancy toxaemia in the ewe. Practice 19(6):306–314CrossRefGoogle Scholar
  10. Baciadonna L, McElligott AG, Briefe EF (2013) Goats favour personal over social information in an experimental foraging task. PeerJ 1:e172. PubMedPubMedCentralCrossRefGoogle Scholar
  11. Baldin M, Dresch R, Souza J et al (2014) CLA induced milk fat depression reduced dry matter intake and improved energy balance in dairy goats. Small Rumin Res 116(1):44–50CrossRefGoogle Scholar
  12. Bar1owska J, Szwajowska M, Litwinczuk Z et al (2011) Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr Rev Food Sci Food Saf 10(6):291–302Google Scholar
  13. Barroso FG, Alados CL, Boza J (2000) Social hierarchy in the domestic goat: effect on food habits and production. Appl Anim Behav Sci 69(1):35–53PubMedCrossRefGoogle Scholar
  14. Bauman DE, Griinari JM (2003) Nutritional regulation of milk fat synthesis. Annu Rev Nutr 23:203–227PubMedCrossRefGoogle Scholar
  15. Bickhardt K, Ganter M, Sallmann P et al (1999) Investigations on manifestations of vitamin E and selenium deficiency in sheep and goats. Dtsch Tierarztl Wochenschr 106(6):242–247PubMedGoogle Scholar
  16. Bobe G, Young JW, Beitz DC (2004) Invited review: pathology, etiology, prevention, and treatment of fatty liver in dairy cows. J Dairy Sci 87(10):3105–3124PubMedCrossRefGoogle Scholar
  17. Bousquet CA (2005) Pathologie caprine en deux-sèvres: état des lieux et impact sur les niveaux de réforme et de mortalité. Ph.D. thesis, University of Paul-Sabatier de Toulouse, Toulouse, FranceGoogle Scholar
  18. Brent BE, Bartley EE (1984) Thiamin and niacin in the rumen. J Anim Sci 59:813–822PubMedCrossRefGoogle Scholar
  19. Brozos C, Mavrogianni VS, Fthenakis GC (2011) Treatment and control of periparturient metabolic diseases: pregnancy toxemia, hypocalcemia, hypomagnesemia. Vet Clin North Am Food Anim Pract 27(1):105–113PubMedCrossRefGoogle Scholar
  20. Cebra CK, Cebra ML (2004) Altered mentation caused by polioencephalomalacia, hypernatremia, and lead poisoning. Vet Clin North Am Food Anim Pract 20:287–302PubMedCrossRefGoogle Scholar
  21. Chartier C (2009) Pathologie caprine: du diagnostic à la prévention. Les Éd. du Point Vétérinaire, Rueil-Malmaison, FranceGoogle Scholar
  22. Chigerwe M, Aleman M (2016) Seizure disorders in goats and sheep. Vet Intern Med 30(5):1752–1757CrossRefGoogle Scholar
  23. Corbera JA, Morales M, Doreste F et al (2007) Experimental struvite urolithiasis in goats. J Appl Anim Res 32:191–194CrossRefGoogle Scholar
  24. Cornelius CE, Moulton JE, McGowan B (1959) Ruminant urolithiasis: I. Preliminary observations in experimental ovine calculosis. Am J Vet Res 20:863–871 PubMedGoogle Scholar
  25. Costello CA, Kelleher NL, Abe M et al (1996) Mechanistic studies on thiaminase I. Overexpression and identification of the active site nucleophile. J Biol Chem 271:3445–3452PubMedCrossRefGoogle Scholar
  26. DeGaris PJ, Lean IJ (2008) Milk fever in dairy cows: a review of pathophysiology and control principles. Vet J 176:58–69PubMedCrossRefGoogle Scholar
  27. Dong H, Wang S, Jia Y et al (2013) Long-term effects of subacute ruminal acidosis (SARA) on milk quality and hepatic gene expression in lactating goats fed a high-concentrate diet. PLoS ONE 8(12):e82850. PubMedPubMedCentralCrossRefGoogle Scholar
  28. Doré V, Dubuc J, Bélanger AM et al (2015) Definition of prepartum hyperketonemia in dairy goats. J Dairy Sci 98(7):4535–4543PubMedCrossRefGoogle Scholar
  29. Edmondson MA, Roberts JF, Baird AN et al (2012) Theriogenology of sheep and goats. In: Pugh DG, Baird AN (eds) Sheep and goat medicine, 2nd edn. Elsevier-Saunders, Maryland Heights, MO, pp 150–231CrossRefGoogle Scholar
  30. Ermilio EM, Smith MC (2011) Treatment of emergency conditions in sheep and goats. Vet Clin North Am Food Anim Pract 27:33–45PubMedCrossRefGoogle Scholar
  31. Ewoldt JM, Anderson DE, Miesner MD et al (2006) Short- and longterm outcome and factors predicting survival after surgical tube cystostomy for treatment of obstructive urolithiasis in small ruminants. Vet Surg 35(5):417–422PubMedCrossRefGoogle Scholar
  32. Fernandes D, Gama MA, Ribeiro CV et al (2014) Milk fat depression and energy balance in stall-fed dairy goats supplemented with increasing doses of conjugated linoleic acid methyl esters. Animal 8(4):587–595PubMedCrossRefGoogle Scholar
  33. Freeman SR, Poore MH, Young GA et al (2010) Influence of calcium (0.6 or 1.2%) and phosphorus (0.3 or 0.6%) content and ratio on the formation of urolithogenic compounds in the urine of Boer-cross goats fed high-concentrate diets. Small Rum Res 93(2):94–102Google Scholar
  34. Ganabadi S Jr, Halimatun Y, Amelia Choong KL et al (2010) Effect of selenium supplementation on spermatogenic cells of goats. Malays J Nutr 16(1):187–193PubMedGoogle Scholar
  35. George JW, Hird DW, George LW (2007) Serum biochemical abnormalities in goats with uroliths: 107 cases (1992–2003). J Am Vet Med Assoc 230(1):101–106PubMedCrossRefGoogle Scholar
  36. Goff JP, Liesegang A, Horst RL (2014) Diet-induced pseudohypoparathyroidism: a hypocalcemia and milk fever risk factor. J Dairy Sci 97(3):1520–1528PubMedCrossRefGoogle Scholar
  37. González FHD, Hernandez F, Madrid J et al (2011) Acute phase proteins in experimentally induced pregnancy toxemia in goats. J Vet Diagn Invest 23(1):57–62PubMedCrossRefGoogle Scholar
  38. Gould DH (1998) Polioencephalomalacia. J Anim Sci 76(1):309–314PubMedCrossRefGoogle Scholar
  39. Gutiérrez C, Escolar E, Juste MC et al (2000) Severe urolithiasis due to trimagnesium orthophosphate calculi in a goat. Vet Rec 146(18):534PubMedCrossRefGoogle Scholar
  40. Halland SK, House JK, George LW (2002) Urethroscopy and laser lithotripsy for the diagnosis and treatment of obstructive urolithiasis in goats and pot-bellied pigs. J Am Vet Med Assoc 220:1831–1834PubMedCrossRefGoogle Scholar
  41. Härter CJ, Castagnino DS, Rivera AR et al (2015) Mineral metabolism in singleton and twin-pregnant dairy goats. Asian-Aust J Anim Sci 28(1):37–49CrossRefGoogle Scholar
  42. Härter CJ, Lima LD, Castagnino DS et al (2017) Net mineral requirements of dairy goats during pregnancy. Animal 13:1–9Google Scholar
  43. Hefnawy AE, Youssef S, Shousha S (2010) Some immunohormonal changes in experimentally pregnant toxemic goats. Vet Med Int 2010:768438. PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hefnawy AE, Shousha S, Youssef S (2011) Hematobiochemical profile of pregnant and experimentally pregnancy toxemic goats. J Basic Appl Chem 1(8):65–69Google Scholar
  45. Heitmann RN, Dawes DJ, Sensenig SC (1987) Hepatic ketogenesis and peripheral ketone body utilization in the ruminant. J Nutr 117(6):1174–1180PubMedCrossRefGoogle Scholar
  46. Herdt TH (1988) Fatty liver in dairy cows. Vet Clin North Am Food Anim Pract 4(2):269–287PubMedCrossRefGoogle Scholar
  47. Herm G, Muscher-Banse AS, Breves G et al (2015) Renal mechanisms of calcium homeostasis in sheep and goats. J Anim Sci 93(4):1608–1621PubMedCrossRefGoogle Scholar
  48. Hesse A, Heimbach D (1999) Causes of phosphate stone formation and the importance of metaphylaxis by urinary acidification: a review. World J Urol 17(5):308–315PubMedCrossRefGoogle Scholar
  49. Hollmann M, Miller I, Hummel K et al (2013) Downregulation of cellular protective factors of rumen epithelium in goats fed high energy diet. PLoS ONE 8(12):e81602. PubMedPubMedCentralCrossRefGoogle Scholar
  50. Huo W, Zhu W, Mao S (2013) Effects of feeding increasing proportions of corn grain on concentration of lipopolysaccharide in the rumen fluid and the subsequent alterations in immune responses in goats. Asian-Aust J Anim Sci 26(10):1437–1445CrossRefGoogle Scholar
  51. Huo W, Zhu W, Mao S (2014) Impact of subacute ruminal acidosis on the diversity of liquid and solid-associated bacteria in the rumen of goats. World J Microbiol Biotechnol 30(2):669–680PubMedCrossRefGoogle Scholar
  52. Ismail ZAB, Al-Majali AM, AMireh F et al (2008) Metabolic profiles in goat does in late pregnancy with and without subclinical pregnancy toxemia. Vet Clin Pathol (37)4:434–437Google Scholar
  53. Jacobs D, Heimbach D, Hesse A (2001) Chemolysis of struvite stones by acidification of artificial urine. Scand J Urol Nephrol 35:345–349PubMedCrossRefGoogle Scholar
  54. Jia YY, Wang SQ, Ni YD et al (2014) High concentrate-induced subacute ruminal acidosis (SARA) increases plasma acute phase proteins (APPs) and cortisol in goats. Animal 8(9):1433–1438PubMedCrossRefGoogle Scholar
  55. Johnson EH, Al-Habsi K, Kaplan E et al (2004) Caprine hepatic lipidosis induced through the intake of low levels of dietary cobalt. Vet J 168(2):174–179PubMedCrossRefGoogle Scholar
  56. Jones ML, Streeter RN, Goad CL (2009) Use of dietary cation anion difference for control of urolithiasis risk factors in goats. Am J Vet Res 70(1):149–155PubMedCrossRefGoogle Scholar
  57. Kaneko J, Harvey JW, Bruss ML (1997) Clinical biochemistry of domestic animals, 5th edn. Academic Press, New York, USAGoogle Scholar
  58. Kannan KVA, Lawrence KE (2010) Obstructive urolithiasis in a Saanen goat in New Zealand, resulting in a ruptured bladder. N Z Vet J 58(5):269–271PubMedCrossRefGoogle Scholar
  59. Kevelam SH, Bugiani M, Salomons GS et al (2013) Exome sequencing reveals mutated SLC19A3 in patients with an early-infantile, lethal encephalopathy. Brain 136:1534–1543PubMedCrossRefGoogle Scholar
  60. Kleen JL, Upgang L, Rehage J (2013) Prevalence and consequences of subacute ruminal acidosis in German dairy herds. Acta Vet Scand 55(1):48PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kleppe BB, Aiello RJ, Grummer RR et al (1988) Triglyceride accumulation and very low-density lipoprotein secretion by rat and goat hepatocytes in vitro. J Dairy Sci 71:1813–1822PubMedCrossRefGoogle Scholar
  62. Kraft CE, Gordon ERL, Angert ER (2014) A rapid method for assaying thiaminase I activity in diverse biological samples. PLoS ONE 9(3):e92688. PubMedPubMedCentralCrossRefGoogle Scholar
  63. Liesegang A (2008) Influence of anionic salts on bone metabolism in periparturient dairy goats and sheep. J Dairy Sci 91(6):2449–2460PubMedCrossRefGoogle Scholar
  64. Liesegang A, Risteli J, Wanner M (2006) The effects of first gestation and lactation on bone metabolism in dairy goats and milk sheep. Bone 38(6):794–802PubMedCrossRefGoogle Scholar
  65. Liesegang A, Staub T, Wichert B et al (2008) Effect of vitamin E supplementation of sheep and goats fed diets supplemented with polyunsaturated fatty acids and low in Se. J Anim Physiol Anim Nutr (Berl) 92(3):292–302Google Scholar
  66. Lima EF, Riet-Correa FT, Ivon M (2005) Polioencephalomalacia in goats and sheep in the semiarid region of north-eastern Brazil. Pesq Vet Bras 25:9–14CrossRefGoogle Scholar
  67. Lima MS, Pascoal RA, Stilwell GT et al (2012) Clinical findings, blood chemistry values, and epidemiologic data obtained from dairy goats with pregnancy toxemia (PT). Bov Pract 46(2):102–110Google Scholar
  68. Lima MS, Silveira JM, Carolino N et al (2016) Usefulness of clinical observations and blood chemistry values for predicting clinical outcomes in dairy goats with pregnancy toxaemia. Ir Vet J 69:16. PubMedPubMedCentralCrossRefGoogle Scholar
  69. Liu J-H, Bian G-R, Zhu W-Y et al (2015) High-grain feeding causes strong shifts in ruminal epithelial bacterial community and expression of Toll-like receptor genes in goats. Front Microbiol 6:167. PubMedPubMedCentralGoogle Scholar
  70. Livingston CW, Calhoun MC, Gauer BB et al (1984) Effect of experimental infection with ovine ureaplasma upon the development of uroliths in feedlot lambs. Israel J Med Sci 20:958–961PubMedGoogle Scholar
  71. Makhdoomi DM, Gazi MA (2013) Obstructive urolithiasis in ruminants—a review. Vet World 6(4):233–238CrossRefGoogle Scholar
  72. Malá S, Kovárů F, Misurová L et al (2009) Influence of selenium on innate immune response in kids. Folia Microbiol (Praha) 54(6):545–548CrossRefGoogle Scholar
  73. Martens H, Schweigel M (2000) Pathophysiology of grass tetany and other hypomagnesemias. Implications for clinical management. Vet Clin North Am Food Anim Pract 16(2):339–368PubMedCrossRefGoogle Scholar
  74. McComb T, Bischoff K, Thompson B et al (2010) An investigation of blood selenium concentrations of goats in New York State. J Vet Diagn Invest 22(5):696–701PubMedCrossRefGoogle Scholar
  75. Medina-Escobedo M, Zaidi M, Real-de Leon E et al (2002) Prevalence and risk factors of urinary lithiasis in Yucatan, Mexico. Salud Pública de México 44(6):541–545PubMedCrossRefGoogle Scholar
  76. Mellado M (2016) Dietary selection by goats and the implications for range management in the Chihuahuan desert: a review. Rangeland J 38(4):331–341CrossRefGoogle Scholar
  77. Morand-Fehr P (2003) Dietary choices of goats at the trough. Small Rumin Res 49(3):231–239CrossRefGoogle Scholar
  78. Morand-Fehr P (2005) Recent developments in goat nutrition and application: a review. Small Rumin Res 60(1–2):25–43CrossRefGoogle Scholar
  79. Murata K (1982) Actions of two types of thiaminase on thiamin and its analogues. Ann N Y Acad Sci 378:146–156PubMedCrossRefGoogle Scholar
  80. Nwaokorie EE, Osborne CA, Lulich JP et al (2015) Risk factors for calcium carbonate urolithiasis in goats. J Am Vet Med Assoc 247(3):293–299PubMedCrossRefGoogle Scholar
  81. Oetzel GR (1988) Parturient paresis and hypocalcemia in ruminant livestock. Vet Clin North Am Food Anim Pract 4:351–364PubMedCrossRefGoogle Scholar
  82. Olkowski AA (1997) Neurotoxicity and secondary metabolic problems associated with low to moderate levels of exposure to excess dietary sulphur in ruminants: a review. Vet Hum Toxicol 39:355–360PubMedGoogle Scholar
  83. Osborne CA, Polzin DJ, Abdullahi SU et al (1985) Struvite urolithiasis in animals and man: formation, detection and dissolution. Adv Vet Sci Comp Med 29:1–45PubMedGoogle Scholar
  84. Packett LV, Coburn SP (1965) Urine proteins in nutritionally induced ovine urolithiasis. Am J Vet Res 26(10):112–119PubMedGoogle Scholar
  85. Pichler M, Damberger A, Arnholdt T et al (2014) Evaluation of two electronic handheld devices for diagnosis of ketonemia and glycemia in dairy goats. J Dairy Sci 97:7538–7546PubMedCrossRefGoogle Scholar
  86. Radostits OM, Gay CC, Hinchcliff KW et al (2007) Pregnancy toxemia in sheep. In: Radostits OM, Gay CC, Hinchcliff KW et al (eds) Veterinary medicine: a textbook of the diseases of cattle, sheep, pigs, goats and horses, 10th edn, Saunders Elsevier USA, Philadelphia, pp 1668–1671Google Scholar
  87. Rook JS (2000) Pregnancy toxemia of ewes, does, and beef cows. Vet Clin North Am Food Anim Pract 16(2):293–317PubMedCrossRefGoogle Scholar
  88. Sadjadian R, Seifi HA, Mohri M et al (2013) Variations of energy biochemical metabolites in periparturient dairy Saanen goats. Comp Clin Pathol 22:449–456Google Scholar
  89. Sahinduran S, Buyukoglu T, Gulay MS et al (2007) Increased water hardness and magnesium levels may increase occurrence of urolithiasis in cows from the Burdur region (Turkey). Vet Res Commun 31(6):665–671Google Scholar
  90. Sánchez J, Montes P, Jiménez A et al (2007) Prevention of clinical mastitis with barium selenate in dairy goats from a selenium-deficient area. J Dairy Sci 90(5):2350–2354PubMedCrossRefGoogle Scholar
  91. Sensenig SC, Dawes DJ, Heitmann RN (1985) Energy metabolite concentrations and net fluxes across splanchnic and peripheral tissues in pregnant ewes. J Anim Sci 61(Suppl. 1):454Google Scholar
  92. Sevcikova L, Pechova A, Pavlata L et al (2011) The effect of various forms of selenium supplied to pregnant goats on the levels of selenium in the body of their kids at the time of weaning. Biol Trace Elem Res 143(2):882–892PubMedCrossRefGoogle Scholar
  93. Shokrollahi B, Mansouri M, Amanlou H (2013) The effect of enriched milk with selenium and vitamin E on growth rate, hematology, some blood biochemical factors, and immunoglobulins of newborn goat kids. Biol Trace Elem Res 153(1–3):184–190PubMedCrossRefGoogle Scholar
  94. Stelletta C, Gianesella M, Morgante M (2008) Metabolic and nutritional diseases. İn: Cannas A, Pulina G (eds) Dairy goats feeding and nutrition, CAB International, Bologna, ItalyGoogle Scholar
  95. Stewart SR, Emerick RJ, Pritchard RH (1990) High dietary calcium to phosphorus ratio and alkali-forming potential as factors promoting silica urolithiasis in sheep. J Anim Sci 68:498–503PubMedCrossRefGoogle Scholar
  96. Stratton-Phelps M, House JK (2004) Effect of a commercial anion dietary supplement on acid–base balance, urine volume, and urinary ion excretion in male goats fed oat or grass hay diets. Am J Vet Res 65:1391–1397. Erratum in: Am J Vet Res 65:1700Google Scholar
  97. Straub M, Hautmann RE, Hesse A et al (2005) Calcium oxalate stones and hyperoxaluria. What is certain? What is new? Der Urologe 44(11):1315–1323Google Scholar
  98. Sun F, Cao Y, Yu C et al (2016) 1,25-dihydroxyvitamin D3 modulates calcium transport in goat mammary epithelial cells in a dose- and energy-dependent manner. J Anim Sci Biotechnol 7:41. PubMedPubMedCentralCrossRefGoogle Scholar
  99. Suárez-Vega A, Toral PG, Gutiérrez-Gil B et al (2017) Elucidating fish oil-induced milk fat depression in dairy sheep: milk somatic cell transcriptome analysis. Sci Rep 7:45905.
  100. Thomas KW, Turner DL, Spicer EM (1987) Thiamine, thiaminase and transketolase levels in goats with and without polioencephalomalacia. Aust Vet J 64:126–127PubMedCrossRefGoogle Scholar
  101. Toms AV, Haas AL, Park JH et al (2005) Structural characterization of the regulatory proteins TenA and TenI from Bacillus subtilis and identification of TenA as a thiaminase II. Biochemistry 44:2319–2329PubMedCrossRefGoogle Scholar
  102. Trevisi E, D’Angelo A, Gaviraghi A et al (2005) Blood inflammatory indices in goats around kidding. Ital J Anim Sci 4(Suppl. 2):404–405Google Scholar
  103. Tufarelli V, Laudadio V (2011) Dietary supplementation with selenium and vitamin E improves milk yield, composition and rheological properties of dairy Jonica goats. J Dairy Res 78(2):144–148PubMedCrossRefGoogle Scholar
  104. Urrutia NL, Harvatine KJ (2017) Acetate dose-dependently stimulates milk fat synthesis in lactating dairy cows. J Nutr 147(5):763–769PubMedCrossRefGoogle Scholar
  105. Van Metre DC, Fubini SL (2006) Ovine and caprine urolithiasis: another piece of the puzzle. Vet Surg 35(5):413–416PubMedCrossRefGoogle Scholar
  106. Ventto L, Leskinen H, Kairenius P et al (2017) Diet-induced milk fat depression is associated with alterations in ruminal biohydrogenation pathways and formation of novel fatty acid intermediates in lactating cows. Br J Nutr 117(3):364–376Google Scholar
  107. Vernon RG, Clegg RA, Flint DJ (1981) Metabolism of sheep adipose tissue during pregnancy and lactation. Adaptation and regulation. Biochem J 200(2):307–314PubMedPubMedCentralCrossRefGoogle Scholar
  108. Wagner CA, Mohebbi N (2010) Urinary pH and stone formation. J Nephrol 23(Suppl. 16):165–169Google Scholar
  109. Wilkens MR, Richter J, Fraser DR et al (2012) In contrast to sheep, goats adapt to dietary calcium restriction by increasing intestinal absorption of calcium. Comp Biochem Physiol A Mol Integr Physiol 163:396–406Google Scholar
  110. Wilkens MR, Liesegang A, Richter J et al (2014) Differences in peripartal plasma parameters related to calcium homeostasis of dairy sheep and goats in comparison with cows. J Dairy Res 81(3):325–332Google Scholar
  111. Yamagishi N, Oishi A, Sato J, Sato R, Naito Y (1999) Experimental hyocalcemia induced by hemodialysis in goats. J Vet Med Sci 61:1271–1275PubMedCrossRefGoogle Scholar
  112. Zobel G, Leslie K, Weary DM et al (2015) Ketonemia in dairy goats: effect of dry period length and effect on lying behavior. J Dairy Sci 98(9):6128–6138Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Veterinary Sciences, Agricultural and Veterinary Sciences SchoolUniversity of Trás-os-Montes and Alto DouroVila RealPortugal
  2. 2.Research Institute of Biomedical and Health SciencesUniversity of Las Palmas de Gran Canaria, TrasmontanaLas PalmasSpain

Personalised recommendations