Skip to main content

Physics and Applications for Tracheal Sound Recordings in Sleep Disorders

  • Chapter
  • First Online:
Breath Sounds

Abstract

Advances in technology have made it possible to reliably and not invasively record physiological parameters to diagnose sleep disorders. The most common sleep-related breathing disorder is sleep apnea. Complete cessation of airflow, apneas, or reduction of airflow, hypopneas occurs during sleep [1]. Based on the underlying pathophysiology, these respiratory events are classified as obstructive or central, with or without respiratory efforts. Accurate and reliable detection and classification of apneas and hypopneas are critical for the diagnosis and quantifying of the disease severity, morbidity, or mortality, as well as for appropriate therapy selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berry RB, Brooks R, Gamaldo CE, for the American Academy of Sleep Medicine (2014) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications, version 2.1. American Academy of Sleep Medicine, Darien, IL

    Google Scholar 

  2. Goodwin JL, Enright PL, Kaemingk KL, Rosen GM et al (2001) Feasibility of using unattended polysomnography in children for research—report of the tucson children’s assessment of sleep apnea study (TuCASA). Sleep 24(8):937–944

    Article  CAS  Google Scholar 

  3. Redline S, Sanders MH, Lind BK, Quan SF et al (1998) Methods for obtaining and analyzing unattended polysomnography data for a multicentre study. Sleep heart health research group. Sleep 21(7):759–767

    Article  CAS  Google Scholar 

  4. Chervin RD, Aldrich MS (1997) Effects of esophageal pressure monitoring on sleep architecture. Am J Respir Crit Care Med 156:881–885

    Article  CAS  Google Scholar 

  5. Alvarez D, Hornero R, Marcos JV, Del Campo F et al (2008) Applying time, frequency and nonlinear features from nocturnal oximetry to OSA diagnosis. In: 30th Conf. Proc. IEEE Eng. Med. Biol. Soc., p 3872–3875

    Google Scholar 

  6. Solà-Soler J, Fiz JA, Morera J, Jané R (2012) Multiclass classification of subjects with Sleep Apnoea-Hypopnoea Syndrome through snoring analysis. Med Eng Phys 34(9):1213–1220

    Article  Google Scholar 

  7. Azarbarzin A, Moussavi Z (2013) Snoring sounds variability as a signature of obstructive sleep apnea. Med Eng Phys 35(4):479–485

    Article  Google Scholar 

  8. Yadollahi A, Giannouli E, Moussavi Z (2010) Sleep apnea monitoring and diagnosis based on pulse oximetry and tracheal sound signals. Med Biol Eng Comput 48(11):1087–1097

    Article  Google Scholar 

  9. J. Solà-Soler, R. Jané, J. A. Fiz and J. Morera (2008) Formant frequencies of normal breath sounds of snorers may indicate the risk of Obstructive Sleep Apnea Syndrome. In: 30th Conf. Proc. IEEE Eng. Med. Biol. Soc., p. 3500–3503

    Google Scholar 

  10. Gavriely N, Cugell D (1996) Airflow effects on amplitude and spectral content of normal breath sounds. J Appl Physiol 80:5–13

    Article  CAS  Google Scholar 

  11. Krumpe PE, Cummiskey JM (1980) Use of laryngeal sound recordings to monitor apnea. Am Rev Respir Dis 122(5):797–801

    Article  CAS  Google Scholar 

  12. Cummiskey J, Williams TC, Krumpe PE, Guilleminault C (1982) The detection and quantification of sleep apnea by tracheal sound recordings. Am Rev Respir Dis 126:221–224

    CAS  PubMed  Google Scholar 

  13. Penzel T, Amend G, Peter JH, Podszus T, Von Wichert P, Zahorka M (1988) Objective monitoring of therpeutical success in heavy snorers: a new technique. In: Chouard CH (ed) Chronic rhonchopathy. John Libbey Eurotext, London, pp 273–278

    Google Scholar 

  14. Meslier N, Racineux JL (1987) Use of tracheal sound recordings to monitor airflow during sleep. In: Peter JH, Podszus T, von Wichert P (eds) Sleep related disorders and internal diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72560-9_11

    Chapter  Google Scholar 

  15. Soufflet G, Charbonneau G, Polit M, Attal P, Denjean A, Escourrou P, Gaultier C (1990) Interaction between tracheal sound and flow rate: a comparison of some different flow evaluations from lung sounds. IEEE Trans Biomed Eng 37(4):384–391

    Article  CAS  Google Scholar 

  16. Nakano H, Hayashi M, Ohshima E, Nishikata N, Shinohara T (2004) Validation of a new system of tracheal sound analysis for the diagnosis of sleep apnea-hypopnea syndrome. Sleep 27:951–957

    Article  Google Scholar 

  17. Yadollahi A, Moussavi Z (2010) Automatic breath and snore sounds classification from tracheal and ambient sounds recordings. Med Eng Phys 32:985–990

    Article  Google Scholar 

  18. Mlynczak M, Migacz E, Migacz M, Kukwa W (2017) Detecting breathing and snoring episodes using a wireless tracheal sensor: a feasibility study. IEEE J Biomed Health Inform 21(6):1504–1510

    Article  Google Scholar 

  19. Gavriely N (1995) Breath sounds methodology. CRC Press, Boca Raton, FL, pp 31–33

    Google Scholar 

  20. Meslier N, Simon I, Kouatchet A, Ouksel H, Person C, Racineux JL (2002) Validation of a suprasternal pressure transducer for apnea classification during sleep. Sleep 25(7):753

    Article  Google Scholar 

  21. Amaddeo A, Fernandez-Bolanos M, Olmo Arroyo J, Khirani S, Baffet G, Fauroux B (2016) Validation of a suprasternal pressure sensor for sleep apnea classification in children. J Clin Sleep Med 12(12):1641–1647

    Article  Google Scholar 

  22. Yadollahi A, Moussavi Z (2005) Measuring minimum critical flow for normal breath sounds. Conf Proc IEEE Eng Med Biol Soc 3:2726–2729

    PubMed  Google Scholar 

  23. Beck R, Rosenhouse G, Mahagnah M, Chow RM, Cugell DW, Gavriely N (2005) Measurements and theory of normal tracheal breath sounds. Ann Biomed Eng 33(10):1344–1351

    Article  Google Scholar 

  24. Sovijärvi AR, Malmberg LP, Charbonneau G, Vanderschoot J, Dalmasso F, Sacco C, Rossi M, Earis JE (2000) Characteristics of breath sounds and adventitious respiratory sounds. Eur Respir Rev 10:591–596

    Google Scholar 

  25. Ayappa I, Rappaport DM (2003) The upper airway in sleep: physiology of the pharynx. Sleep Med Rev 7:9–33

    Article  Google Scholar 

  26. Van Surell C, Lemaigre D, Leroy M, Foucher A, Hagenmuller MP, Raffestin B (1995) Evaluation of an ambulatory device, CID 102, in the diagnosis of obstructive sleep apnoea syndrome. Eur Respir J 8:795–800

    PubMed  Google Scholar 

  27. Reyes BA, Reljin N, Chon KH (2014) Tracheal sounds acquisition using Smartphon. Sensors 14:13830–13850

    Article  Google Scholar 

  28. Elwali A, Moussavi Z (2017) Obstructive sleep apnea screening and airway structure characterization during wakefulness using tracheal breathing sounds. Ann Biomed Eng 45(3):839–850

    Article  Google Scholar 

  29. Penzel T, Peter JH (1991) Design of an ambulatory sleep apnea recorder. In: Nagle HT, Tompkins WJ (eds) Case studies in medical instrument design. The Institute of Electrical and Electronics Engineers, Orlando, pp 171–179

    Google Scholar 

  30. Beckerman RC, Wegmann MJ, Waring WW (1982) Tracheal breath sounds for detection of apnea in infants and children. Crit Care Med 10(6):363 6

    Article  Google Scholar 

  31. Que C, Kolmaga C, Durand L, Kelly S, Macklem P (2002) Phonospirometry for noninvasive measurement of ventilation: methodology and preliminary results. J Appl Phys 93:1515–1526

    Google Scholar 

  32. Harper V, Pasterkamp H, Kiyokawa H, Wodicka G (2003) Modeling and measurement of flow effects on tracheal sounds. IEEE TransBiomed Eng 50(1):1–10

    Article  Google Scholar 

  33. Golabbakhsh M, Moussavi Z (2004) Relationship between airflow and frequency-based features of tracheal respiratory sounds. In: Proc. IEEE Canadian Conf. Elec. Comp. Eng. (CCECE), p 751–754

    Google Scholar 

  34. Yadollahi A, Moussavi Z (2007) Acoustical flow estimation: review and validation. IEEE Mag Biomed Eng 26(1):56–61

    Article  Google Scholar 

  35. Sierra G, Telfort V, Popov B, Durand LG, Agarwal R, Lanzo V (2004) Monitoring respiratory rate based on tracheal sounds. First experiences. Conf Proc IEEE Eng Med Biol Soc, 1:317–320

    CAS  PubMed  Google Scholar 

  36. Yadollahi A, Moussavi Z (2008) Comparison of flow-sound relationship for different features of tracheal sound. Conf Proc IEEE Eng Med Biol Soc, 2008:805–808

    PubMed  Google Scholar 

  37. Kulkas A, Huupponen E, Virkkala J, Tenhunen M, Saastamoinen A, Rauhala E, Himanen S-L (2009) Intelligent methods for identifying respiratory cycle phases from tracheal sound signal during sleep. Comput Biol Med 39:1000–1005

    Article  CAS  Google Scholar 

  38. Chuah JS, Moussavi Z (2000) Automated respiratory phase detection by acoustical means. In: Proceedings of system cyber information conference, p 228–231

    Google Scholar 

  39. S. Le Cam, C. Collet, F. Salzenstein (2008) Acoustical respiratory signal analysis and phase detection. In: Proceedings of IEEE international conference on acoustics, speech, and signal processing (ICASSP), p 3629–3632

    Google Scholar 

  40. Huq S, Moussavi Z (2012) Acoustic breath-phase detection using tracheal breath sounds. Med Biol Eng Comput 50:297–308

    Article  Google Scholar 

  41. Penzel T, Amend G, Meinzer K, Peter JH, Von Wichert P (1990) MESAM: a heart rate and snoring recorder for detection of obstructive sleep apnea. Sleep 13(2):175–182

    Article  CAS  Google Scholar 

  42. Kulkas A, Huupponen E, Virkkala J, Tenhunen M, Saastamoinen A, Rauhala E, Himanen S-L (2009) New tracheal sound feature for apnoea analysis. Med Biol Eng Comput 47:405–412

    Article  CAS  Google Scholar 

  43. Yadollahi A, Moussavi Z (2009) Acoustic obstructive sleep apnea detection. Conf Proc IEEE Eng Med Biol Soc 2009:7110–7113

    PubMed  Google Scholar 

  44. Kulkas A, Rauhala E, Huupponen E, Virkkala J, Tenhunen M, Saastamoinen A, Himanen S-L (2008) Detection of compressed tracheal sound patterns with large amplitude variation during sleep. Med Biol Eng Comput 46:315–321

    Article  CAS  Google Scholar 

  45. Rauhala E, Hasan J, Kulkas A, Saastamoinen A, Huupponen E, Cameron F, Himanen SL (2008) Compressed tracheal sound analysis in screening of sleep-disordered breathing. Clin Neurophysiol 119:2037–2043

    Article  Google Scholar 

  46. Sanchez I, Pasterkamp H (1993) Tracheal sound spectra depend on body height. Am Rev Respir Dis 148:1083–1087

    Article  CAS  Google Scholar 

  47. Yadollahi A, Moussavi Z (2011) Detailed analysis of the relationship between tracheal breath sounds and airflow in relation to OSA during wake and sleep. Conf Proc IEEE Eng Med Biol Soc 2011:6797–6800

    CAS  PubMed  Google Scholar 

  48. Heo JY, Kim JS (2011) Correlation between severity of sleep apnea and upper airway morphology: cephalometry and MD-CT study during awake and sleep states. Acta Otolaringol 131:84–90

    Article  Google Scholar 

  49. Yadollahi A, Montazeri A, Azarbarzin A, Moussavi Z (2013) Respiratory flow–sound relationship during both wakefulness and sleep and its variation in relation to sleep apnea. Ann Biomed Eng 41(3):537–546

    Article  Google Scholar 

  50. Montazeri A, Moussavi Z (2010) Acoustical screening for obstructive sleep apnea during wakefulness. Conf Proc IEEE Eng Med Biol Soc 2010:3662–3665

    PubMed  Google Scholar 

  51. Montazeri A, Moussavi Z (2011) Obstructive sleep apnea prediction during wakefulness. Conf Proc IEEE Eng Med Biol Soc 2011:773–776

    PubMed  Google Scholar 

  52. Montazeri A, Moussavi Z (2012) Assessment of obstructive sleep apnea and its severity during wakefulness. Ann Biomed Eng 40(4):916–924

    Article  Google Scholar 

  53. Solà-Soler J, Fiz JA, Torres A, Jané R (2014) Identification of obstructive sleep apnea patients from tracheal breath sound analysis during wakefulness in polysomnographic studies. Conf Proc IEEE Eng Med Biol Soc 2014:4232–4235

    PubMed  Google Scholar 

  54. Sultanzada R, Moussavi Z (2015) Upper airway resistance changes from inspiration to expiration during wakefulness is a predictor of sleep apnea: a pilot study. Conf Proc IEEE Eng Med Biol Soc 2015:2231–2234

    Google Scholar 

  55. Azarbarzin A, Moussavi Z (2012) A comparison between recording sites of snoring sounds in relation to upper airway obstruction. Conf Proc IEEE Eng Med Biol Soc 2012:4246–4249

    PubMed  Google Scholar 

  56. Perez-Padilla J, Slawinski E, Difrancesco L, Feige R, Remmers J, Whitelaw W (1993) Characteristics of the snoring noise in patients with and without occlusive sleep apnea. Am Rev Respir Dis 147(3):635–644

    Article  CAS  Google Scholar 

  57. Sabil A, Baffet G, Freycenon C, Pinguet J (2017) Apnea charcterization using tracheal sound spectral analysis. Sleep and Breathing conference, Marseille

    Google Scholar 

  58. Racineux JL (2006) Bruit trachéal et résistance des voies aériennes supérieures. Rev Mal Respir 23:7S48–7S50

    Google Scholar 

  59. Glos M, Sabil A, Jelavic KS, Schöbel C, Fietze I, Penzel T (2018) Characterization of respiratory events in obstructive sleep apnea using suprasternal pressure monitoring. J Clin Sleep Med. Accepted 17 Nov. 2017 (in press)

    Google Scholar 

  60. “Recommandations pour la pratique clinique (RPC)”, for the classification of apneas with a level of evidence of III recommended

    Google Scholar 

  61. De Roek J, Van Hoof E, Cluydts R (1983) Sleep related expiratory groaning. A case report. Sleep Res 12:237

    Google Scholar 

  62. Guilleminault C, Hagen CC, Khaja AM (2008) Catathrenia is not expiratory snoring. Sleep 31(6):774–775

    Article  Google Scholar 

  63. Siddiqui F, Walters AS, Chokroverty S (2008) Catathrenia: a rare parasomnia which may mimic central sleep apnea on polysomnogram. Sleep Med 9(4):460–461

    Article  Google Scholar 

  64. Vetrugno R, Lugaresi E, Ferini-Strambi L, Montagna P (2008) Catathrenia (nocturnal groaning): what is it? Sleep 31(3):308–309

    Article  Google Scholar 

  65. Iriarte J, Fernández S, Fernandez-Arrechea N, Urrestarazu E, Pagola I, Alegre M, Artieda J (2011) Sound analysis of catathrenia: a vocal expiratory sound. Sleep Breath 15:229–235

    Article  Google Scholar 

  66. Yanagihara N (1967) Significance of harmonic changes and noise components in hoarseness. J Speech Hear Res 10:531–541

    Article  CAS  Google Scholar 

  67. Baffet G, Montaron C, Sabil A (2016) A new sensor for various respiratory events detection during sleep. ESRS Conference, Bologna, 2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Penzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Penzel, T., Sabil, A. (2018). Physics and Applications for Tracheal Sound Recordings in Sleep Disorders. In: Priftis, K., Hadjileontiadis, L., Everard, M. (eds) Breath Sounds. Springer, Cham. https://doi.org/10.1007/978-3-319-71824-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71824-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71823-1

  • Online ISBN: 978-3-319-71824-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics