Advertisement

TUNEL Assay

  • Monica MuratoriEmail author
  • Elisabetta Baldi
Chapter

Abstract

Sperm DNA fragmentation consists of single- and double-DNA strand breaks in the nuclei of spermatozoa and represents a semen parameter that can improve the diagnostic ability of routine semen analysis in a male infertility workup. Among the available tests detecting sperm DNA fragmentation, TUNEL assay is very popular because it is easy and rapid to execute. However, many variants of this test exist making it difficult to compare the measurements among different laboratories. One main advantage of TUNEL is that it allows for the use of flow cytometry and to simultaneously detect sperm DNA fragmentation with other cell features. A novel version of TUNEL, termed TUNEL/PI, couples sperm DNA break detection with nuclear staining ameliorating the accuracy of flow cytometric measures of sperm DNA fragmentation and revealing two sperm populations, brighter and dimmer, with a different extent of DNA breakage. The brighter fraction of sperm DNA fragmentation is a promising predictor of male infertility and a more sensitive measure of change in DNA breakage during sperm selection for in vitro fertilization.

Keywords

TUNEL Sperm DNA fragmentation Flow cytometry Male infertility 

References

  1. 1.
    Muratori M, Marchiani S, Tamburrino L, Forti G, Luconi M, Baldi E. Markers of human sperm functions in the ICSI era. Front Biosci (Landmark Ed). 2011;16:1344–63.CrossRefGoogle Scholar
  2. 2.
    Filimberti E, Degl’Innocenti S, Borsotti M, Quercioli M, Piomboni P, Natali I, et al. High variability in results of semen analysis in andrology laboratories in Tuscany (Italy): the experience of an external quality control (EQC) programme. Andrology. 2013;1:401–7. https://doi.org/10.1111/j.2047–2927.2012.00042.x.CrossRefPubMedGoogle Scholar
  3. 3.
    World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: World Health Organization; 2010.Google Scholar
  4. 4.
    Alvarez C, Castilla JA, Martínez L, Ramírez JP, Vergara F, Gaforio JJ. Biological variation of seminal parameters in healthy subjects. Hum Reprod. 2003;18:2082–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Keel BA. Within- and between-subject variation in semen parameters in infertile men and normal semen donors. Fertil Steril. 2006;85:128–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14:1039–49.CrossRefPubMedGoogle Scholar
  7. 7.
    Spanò M, Bonde JP, Hjøllund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril. 2000;73:43–50.CrossRefPubMedGoogle Scholar
  8. 8.
    Giwercman A, Lindstedt L, Larsson M, Bungum M, Spano M, Levine RJ, et al. Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case-control study. Int J Androl. 2010;33:e221–7. https://doi.org/10.1111/j.1365–2605.2009.00995.x.CrossRefPubMedGoogle Scholar
  9. 9.
    Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S, et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod. 2012;27:2908–17. https://doi.org/10.1093/humrep/des261.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhao J, Zhang Q, Wang Y, Li Y. Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil Steril. 2014;102:998–1005.e8. https://doi.org/10.1016/j.fertnstert.2014.06.033.CrossRefPubMedGoogle Scholar
  11. 11.
    Tamburrino L, Marchiani S, Montoya M, Elia Marino F, Natali I, Cambi M, et al. Mechanisms and clinical correlates of sperm DNA damage. Asian J Androl. 2012;14:24–31. https://doi.org/10.1038/aja.2011.59.CrossRefPubMedGoogle Scholar
  12. 12.
    Simon L, Zini A, Dyachenko A, Ciampi A, Carrell DT. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J Androl. 2016. https://doi.org/10.4103/1008–682X.182822.
  13. 13.
    Zini A. Are sperm chromatin and DNA defects relevant in the clinic? Syst Biol Reprod Med. 2011;57:78–85. https://doi.org/10.3109/19396368.2010.515704. Epub 2011 Jan 6CrossRefPubMedGoogle Scholar
  14. 14.
    Ribas-Maynou J, García-Peiró A, Fernández-Encinas A, Abad C, Amengual MJ, Prada E, et al. Comprehensive analysis of sperm DNA fragmentation by five different assays: TUNEL assay, SCSA, SCD test and alkaline and neutral Comet assay. Andrology. 2013;1:715–22. https://doi.org/10.1111/j.2047–2927.2013.00111.x.CrossRefPubMedGoogle Scholar
  15. 15.
    Cui ZL, Zheng DZ, Liu YH, Chen LY, Lin DH, Lan F-H. Diagnostic accuracies of the TUNEL, SCD, and Comet based sperm DNA fragmentation assays for male infertility: a meta-analysis study. Clin Lab. 2015;61:525–35.PubMedGoogle Scholar
  16. 16.
    Simon L, Liu L, Murphy K, Ge S, Hotaling J, Aston KI, et al. Comparative analysis of three sperm DNA damage assays and sperm nuclear protein content in couples undergoing assisted reproduction treatment. Hum Reprod. 2014;29:904–17. https://doi.org/10.1093/humrep/deu040.CrossRefPubMedGoogle Scholar
  17. 17.
    Manicardi GC, Tombacco A, Bizzaro D, Bianchi U, Bianchi PG, Sakkas D. DNA strand breaks in ejaculated human spermatozoa: comparison of susceptibility to the nick translation and terminal transferase assays. Histochem J. 1998;30:33–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Mitchell LA, De Iuliis GN, Aitken RJ. The TUNEL assay consistently underestimates DNA damage in human spermatozoa and is influenced by DNA compaction and cell vitality: development of an improved methodology. Int J Androl. 2011;34:2–13. https://doi.org/10.1111/j.1365-2605.2009.01042.x.CrossRefPubMedGoogle Scholar
  19. 19.
    Muratori M, Tamburrino L, Marchiani S, Cambi M, Olivito B, Azzari C, et al. Investigation on the origin of sperm DNA fragmentation: role of apoptosis, immaturity and oxidative stress. Mol Med. 2015;21:109–22. https://doi.org/10.2119/molmed.2014.00158.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Domınguez-Fandos D, Camejo MI, Ballesca JL, Oliva R. Human sperm DNA fragmentation: correlation of TUNEL results as assessed by flow cytometry and optical microscopy. Cytometry A. 2007;71A:1011–8.CrossRefGoogle Scholar
  21. 21.
    Ausubel MF, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, et al. Short protocols in molecular biology. 2nd ed. New York: Greene Publishing Association and Wiley; 1992.Google Scholar
  22. 22.
    Gorczyca W, Traganos F, Jesionowska H, Darzynkiewicz Z. Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res. 1993;207:202–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Muratori M, Tamburrino L, Tocci V, Costantino A, Marchiani S, Giachini C, et al. Small variations in crucial steps of TUNEL assay coupled to flow cytometry greatly affect measures of sperm DNA fragmentation. J Androl. 2010;31:336–45. https://doi.org/10.2164/jandr01.109.008508.CrossRefPubMedGoogle Scholar
  24. 24.
    Muratori M, Tamburrino L, Marchiani S, Guido C, Forti G, Baldi E. Critical aspects of detection of sperm DNA fragmentation by TUNEL/flow cytometry. Syst Biol Reprod Med. 2010;56:277–85. https://doi.org/10.3109/19396368.2010.489660.CrossRefPubMedGoogle Scholar
  25. 25.
    Sharma R, Masaki J, Agarwal A. Sperm DNA fragmentation analysis using the TUNEL assay. Methods Mol Biol. 2013;927:121–36.CrossRefPubMedGoogle Scholar
  26. 26.
    Younglai EV, Holt D, Brown P, Jurisicova A, Casper RF. Sperm swim-up techniques and DNA fragmentation. Hum Reprod. 2001;16:1950–3.CrossRefPubMedGoogle Scholar
  27. 27.
    Aitken RJ, De Iuliis GN, Finnie JM, Hedges A, McLachlan RI. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum Reprod. 2010;25:2415–26. https://doi.org/10.1093/humrep/deq214.CrossRefPubMedGoogle Scholar
  28. 28.
    Muratori M, Marchiani S, Tamburrino L, Tocci V, Failli P, Forti G, et al. Nuclear staining identifies two populations of human sperm with different DNA fragmentation extent and relationship with semen parameters. Hum Reprod. 2008;23:1035–43. https://doi.org/10.1093/humrep/den058.CrossRefPubMedGoogle Scholar
  29. 29.
    Muratori M, Porazzi I, Luconi M, Marchiani S, Forti G, Baldi E. AnnexinV binding and merocyanine staining fail to detect human sperm capacitation. J Androl. 2004;25:797–810.CrossRefPubMedGoogle Scholar
  30. 30.
    Marchiani S, Tamburrino L, Maoggi A, Vannelli GB, Forti G, Baldi E, et al. Characterization of M540 bodies in human semen: evidence that they are apoptotic bodies. Mol Hum Reprod. 2007;13:621–31.CrossRefPubMedGoogle Scholar
  31. 31.
    Marchiani S, Tamburrino L, Olivito B, Betti L, Azzari C, Forti G, et al. Characterization and sorting of flow cytometric populations in human semen. Andrology. 2014;2:394–401. https://doi.org/10.1111/j.2047–2927.2014.00208.x.CrossRefPubMedGoogle Scholar
  32. 32.
    Erenpreiss J, Bungum M, Spano M, Elzanaty S, Orbidans J, Giwercman A. Intraindividual variation in sperm chromatin structure assay parameters in men from infertile couples: clinical implications. Hum Reprod. 2006;21:2061–4.CrossRefPubMedGoogle Scholar
  33. 33.
    Oleszczuk K, Giwercman A, Bungum M. Intra-individual variation of the sperm chromatin structure assay DNA fragmentation index in men from infertile couples. Hum Reprod. 2011;26:3244–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Sergerie M, Laforest G, Boulanger K, Bissonnette F, Bleau G. Longitudinal study of sperm DNA fragmentation as measured by terminal uridine nick end–labelling assay. Hum Reprod. 2005;20:1921–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Muratori M, Marchiani S, Tamburrino L, Cambi M, Lotti F, Natali I, et al. DNA fragmentation in brighter sperm predicts male fertility independently from age and semen parameters. Fertil Steril. 2015;104:582–90.e4. https://doi.org/10.1016/j.fertnstert.2015.06.005.CrossRefPubMedGoogle Scholar
  36. 36.
    Sergerie M, Mieusset R, Croute F, Daudin M, Bujan L. High risk of temporary alteration of semen parameters after recent acute febrile illness. Fertil Steril. 2007;88:970.e1–7.CrossRefGoogle Scholar
  37. 37.
    Evenson DP, Jost LK, Corzett M, Balhorn R. Characteristics of human sperm chromatin structure following an episode of influenza and high fever: a case study. J Androl. 2000;21:739–46.PubMedGoogle Scholar
  38. 38.
    Marchiani S, Tamburrino L, Giuliano L, Nosi D, Sarli V, Gandini L, et al. Sum01-ylation of human spermatozoa and its relationship with semen quality. Int J Androl. 2011;34:581–93. https://doi.org/10.1111/j.1365–2605.2010.01118.x.CrossRefPubMedGoogle Scholar
  39. 39.
    Sakkas D, Seli E, Bizzaro D, Tarozzi N, Manicardi GC. Abnormal spermatozoa in the ejaculate: abortive apoptosis and faulty nuclear remodelling during spermatogenesis. Reprod Biomed Online. 2003;7:428–32.CrossRefPubMedGoogle Scholar
  40. 40.
    Oosterhuis GJ, Mulder AB, Kalsbeek-Batenburg E, Lambalk CB, Schoemaker J, et al. Measuring apoptosis in human spermatozoa: a biological assay for semen quality? Fertil Steril. 2000;74:245–50.CrossRefPubMedGoogle Scholar
  41. 41.
    Irvine DS, Twigg JP, Gordon EL, Fulton N, Milne PA, Aitken RJ. DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 2000;21:33–44.PubMedGoogle Scholar
  42. 42.
    Saleh RA, Agarwal A, Nada EA, El-Tonsy MH, Sharma RK, Meyer A, Nelson DR, Thomas AJ. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril. 2003;79:1597–605. https://doi.org/10.1016/j.rbm0.2013.06.014.CrossRefPubMedGoogle Scholar
  43. 43.
    Lewis SE, John Aitken R, Conner SJ, Iuliis GD, Evenson DP, Henkel R, et al. The impact of sperm DNA damage in assisted conception and beyond: recent advances in diagnosis and treatment. Reprod Biomed Online. 2013;27:325–37. https://doi.org/10.1016/j.rbm0.2013.06.014.CrossRefPubMedGoogle Scholar
  44. 44.
    Muratori M, Tarozzi N, Cambi M, Boni L, Iorio AL, Passaro C, et al. Variation of DNA fragmentation levels during density gradient sperm selection for assisted reproduction techniques: a possible new male predictive parameter of pregnancy? Medicine (Baltimore). 2016;95:e3624. https://doi.org/10.1097/MD.0000000000003624.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Center of Excellence DeNotheUniversity of FlorenceFlorenceItaly
  2. 2.Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly

Personalised recommendations