Skip to main content

Experimental Studies on Sperm DNA Fragmentation and Reproductive Outcomes

  • Chapter
  • First Online:
A Clinician's Guide to Sperm DNA and Chromatin Damage

Abstract

Most of the assisted reproductive technologies (ARTs) overcome the selection of spermatozoa occurring within the female genital tract in mammals. This selection ensures the fertilization with spermatozoa containing chromatin of high integrity for supporting the ulterior embryo development. Consequently the use of nonselected spermatozoa porting fragmented DNA has been related to developmental and postnatal effects in animal models. The present chapter provides an overview on the implications of using sperm porting fragmented DNA in the reproductive outcome focusing in the knowledge acquired through experimentation in animal models. This is highly relevant given that intracytoplasmic sperm injection (ICSI) has been widely used in fertility treatments in humans. However, experimentation in mouse has demonstrated the risk of using DNA-fragmented spermatozoa in ICSI reducing the embryo and fetal performance as well as provoking long-term deleterious effects in the offspring at adulthood. In addition, the use of storage techniques for spermatozoa such as freezing-thawing and vitrification has been shown to increase the risk of fertilizing with fragmented DNA. Together with mammalian studies, the use of other nonmammalian animal models like fish could help in understanding the consequences of these treatments and to develop new strategies for sperm evaluation and selection before applying ARTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suarez SS, Pacey AA. Sperm transport in the female reproductive tract. Hum Reprod Update. 2006;12:23–37.

    Article  CAS  PubMed  Google Scholar 

  2. Sakkas D, Ramalingam M, Garrido N, Barratt CL. Sperm selection in natural conception: what can we learn from mother nature to improve assisted reproduction outcomes? Hum Reprod Update. 2015;21:711–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Timothy T, Koyanagi F, Yanagimachi R. Distribution and number of spermatozoa in the oviduct of the golden after natural mating and artificial insemination & hamster. Biol Reprod. 1987;37:225–34.

    Article  Google Scholar 

  4. Williams M, Hill CJ, Scudamore I, Dunphy B, Cooke ID, Barratt CL. Sperm numbers and distribution within the human fallopian tube around ovulation. Hum Reprod. 1993;8:2019–26.

    Article  CAS  PubMed  Google Scholar 

  5. Hino T, Muro Y, Tamura-Nakano M, Okabe M, Tateno H, Yanagimachi R. The behavior and acrosomal status of mouse spermatozoa in vitro, and within the oviduct during fertilization after natural mating. Biol Reprod. 2016;95:50.

    Article  PubMed  Google Scholar 

  6. Muro Y, Hasuwa H, Isotani A, Miyata H, Yamagata K, Ikawa M, Yanagimachi R, Okabe M. Behavior of mouse spermatozoa in the female reproductive tract from soon after mating to the beginning of fertilization. Biol Reprod. 2016;94:80.

    Article  PubMed  Google Scholar 

  7. Ola B, Afnan M, Papaioannou S, Sharif K, Björndahl L, Coomarasamy A. Accuracy of sperm–cervical mucus penetration tests in evaluating sperm motility in semen: a systematic quantitative review. Hum Reprod. 2003;18:1037–46.

    Article  PubMed  Google Scholar 

  8. Aitken RJ, Bowie H, Buckingham D, Harkiss D, Richardson DW, West KM. Sperm penetration into a hyaluronic acid polymer as a means of monitoring functional competence. J Androl. 1992;13:44–54.

    CAS  PubMed  Google Scholar 

  9. Hourcade JD, Pérez-Crespo M, Fernández-González R, Pintado B, Gutiérrez-Adán A. Selection against spermatozoa with fragmented DNA after postovulatory mating depends on the type of damage. Reprod Biol Endocrinol. 2010;8:9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schuberth HJ, Taylor U, Zerbe H, Waberski D, Hunter R, Rath D. Immunological responses to semen in the female genital tract. Theriogenology. 2008;70:1174–81.

    Article  CAS  PubMed  Google Scholar 

  11. Sakkas D, Moffatt O, Manicardi GC, Mariethoz E, Tarozzi N, Bizzaro D. Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod. 2002;66:1061–7.

    Article  CAS  PubMed  Google Scholar 

  12. Sullivan R, Saez F. Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology. Reproduction. 2013;146:R21.

    Article  CAS  PubMed  Google Scholar 

  13. Nakanishi T, Isotani A, Yamaguchi R, Ikawa M, Baba T, Suarez SS, Okabe M. Selective passage through the uterotubal junction of sperm from a mixed population produced by chimeras of calmegin-knockout and wild-type male mice. Biol Reprod. 2004;71:959–65.

    Article  CAS  PubMed  Google Scholar 

  14. Talevi R, Gualtieri R. Molecules involved in sperm-oviduct adhesion and release. Theriogenology. 2010;73:796–801.

    Article  CAS  PubMed  Google Scholar 

  15. Perez-Cerezales S, Boryshpolets S, Eisenbach M. Behavioral mechanisms of mammalian sperm guidance. Asian J Androl. 2015;17:628–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pérez-Cerezales S, Boryshpolets S, Afanzar O, Brandis A, Nevo R, Kiss V, Eisenbach M. Involvement of opsins in mammalian sperm thermotaxis. Sci Rep. 2015;5:16146.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bahat A, Tur-Kaspa I, Gakamsky A, Giojalas LC, Breitbart H, Eisenbach M. Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract. Nat Med. 2003;9:149–50.

    Article  CAS  PubMed  Google Scholar 

  18. Miki K, Clapham DE. Rheotaxis guides mammalian sperm. Curr Biol. 2013;23:443–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sugiyama H, Chandler DE. Sperm guidance to the egg finds calcium at the helm. Protoplasma. 2014;251:461–75.

    Article  PubMed  Google Scholar 

  20. Alvarez L, Friedrich BM, Gompper G, Kaupp UB. The computational sperm cell. Trends Cell Biol. 2014;24:198–207.

    Article  CAS  PubMed  Google Scholar 

  21. Liu DY, Baker HWG. Human sperm bound to the zona pellucida have normal nuclear chromatin as assessed by acridine orange fluorescence. Hum Reprod. 2007;22:1597–602.

    Article  CAS  PubMed  Google Scholar 

  22. Ramos L, Wetzels AM. Low rates of DNA fragmentation in selected motile human spermatozoa assessed by the TUNEL assay. Hum Reprod. 2001;16:1703–7.

    Article  CAS  PubMed  Google Scholar 

  23. Huang CC, Lin DP, Tsao HM, Cheng T-C, Liu CH, Lee MS. Sperm DNA fragmentation negatively correlates with velocity and fertilization rates but might not affect pregnancy rates. Fertil Steril. 2005;84:130–40.

    Article  PubMed  Google Scholar 

  24. Kotłowska M, Dietrich G, Wojtczak M, Karol H, Ciereszko A. Effects of liquid storage on amidase activity, DNA fragmentation and motility of turkey spermatozoa. Theriogenology. 2000;67:276–86.

    Article  Google Scholar 

  25. Kasimanickam R, Pelzer KD, Kasimanickam V, Swecker WS, Thatcher CD. Association of classical semen parameters, sperm DNA fragmentation index, lipid peroxidation and antioxidant enzymatic activity of semen in ram-lambs. Theriogenology. 1980;65:1407–21.

    Article  Google Scholar 

  26. Kasimanickam R, Nebel RL, Peeler ID, Silvia WL, Wolf KT, McAllister AJ, Cassell BG. Breed differences in competitive indices of Holstein and Jersey bulls and their association with sperm DNA fragmentation index and plasma membrane integrity. Theriogenology. 1997;66:1307–15.

    Article  Google Scholar 

  27. Holt WV, Fazeli A. Do sperm possess a molecular passport? Mechanistic insights into sperm selection in the female reproductive tract. Mol Hum Reprod. 2015;21:491–501.

    Article  PubMed  Google Scholar 

  28. Yanagimachi R. Intracytoplasmic injection of spermatozoa and spermatogenic cells: its biology and applications in humans and animals. Reprod Biomed Online. 2005;10:247–88.

    Article  PubMed  Google Scholar 

  29. Lopes S, Sun JG, Jurisicova A, Meriano J, Casper RF. Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertil Steril. 1998;69:528–32.

    Article  CAS  PubMed  Google Scholar 

  30. Saleh RA, Agarwal A, Sharma RK, Said TM, Sikka SC, Thomas AJ. Evaluation of nuclear DNA damage in spermatozoa from infertile men with varicocele. Fertil Steril. 2003;80:1431–6.

    Article  PubMed  Google Scholar 

  31. Enciso M, Muriel L, Fernández JL, Goyanes V, Segrelles E, Marcos M, Montejo JM, Ardoy M, Pacheco A, Gosálvez J. Infertile men with varicocele show a high relative proportion of sperm cells with intense nuclear damage level, evidenced by the sperm chromatin dispersion test. J Androl. 2006;27:106–11.

    Article  PubMed  Google Scholar 

  32. Zini A, Libman J. Sperm DNA damage: importance in the era of assisted reproduction. Curr Opin Urol. 2006;16:428–34.

    Article  PubMed  Google Scholar 

  33. Ozmen B, Caglar GS, Koster F, Schopper B, Diedrich K, Al-Hasani S. Relationship between sperm DNA damage, induced acrosome reaction and viability in ICSI patients. Reprod Biomed Online. 2007;15:208–14.

    Article  CAS  PubMed  Google Scholar 

  34. Yoshida A, Nakahori Y, Kuroki Y, Miura K, Shirai M. An azoospermic male with an unbalanced autosomal-Y translocation. Jpn J Hum Genet. 1997;42:451–5.

    Article  CAS  PubMed  Google Scholar 

  35. Van Assche E, Bonduelle M, Tournaye H, Joris H, Verheyen G, Devroey P, Van Steirteghem A, Liebaers I. Cytogenetics of infertile men. Hum Reprod. 1996;11(Suppl 4):1–24. 6

    Article  PubMed  Google Scholar 

  36. Kent-First MG, Kol S, Muallem A, Blazer S, Itskovitz-Eldor J. Infertility in intracytoplasmic-sperm-injection-derived sons. Lancet. 1996;348:332.

    Article  CAS  PubMed  Google Scholar 

  37. Silber SJ, Repping S. Transmission of male infertility to future generations: lessons from the Y chromosome. Hum Reprod Update. 2002;8:217–29.

    Article  PubMed  Google Scholar 

  38. Fernández-Gonzalez R, Moreira PN, Pérez-Crespo M, Sánchez-Martín M, Ramirez MA, Pericuesta E, Bilbao A, Bermejo-Alvarez P, de Dios HJ, de Fonseca FR, Gutiérrez-Adán A. Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol Reprod. 2008;78:761–72.

    Article  PubMed  Google Scholar 

  39. Benchaib M, Braun V, Lornage J, Hadj S, Salle B, Lejeune H, Guérin JF. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod. 2003;18:1023–8.

    Article  PubMed  Google Scholar 

  40. Devroey P, Van Steirteghem A. A review of ten years experience of ICSI. Hum Reprod Update. 2004;10:19–28.

    Article  CAS  PubMed  Google Scholar 

  41. Yamauchi Y, Riel JM, Ward MA. Paternal DNA damage resulting from various sperm treatments persists after fertilization and is similar before and after DNA replication. J Androl. 2012;33:229–38.

    Article  CAS  PubMed  Google Scholar 

  42. Moreira PN, Pérez-Crespo M, Ramírez MA, Pozueta J, Montoliu L, Gutiérrez-Adán A. Effect of transgene concentration, flanking matrix attachment regions, and RecA-coating on the efficiency of mouse transgenesis mediated by intracytoplasmic sperm injection. Biol Reprod. 2007;76:336–43.

    Article  CAS  PubMed  Google Scholar 

  43. Yamagata K, Suetsugu R, Wakayama T. Assessment of chromosomal integrity using a novel live-cell imaging technique in mouse embryos produced by intracytoplasmic sperm injection. Hum Reprod. 2009;24:2490–9.

    Article  CAS  PubMed  Google Scholar 

  44. Ramos-Ibeas P, Calle A, Fernández-González R, Laguna-Barraza R, Pericuesta E, Calero A, Ramírez MA, Gutiérrez-Adán A. Intracytoplasmic sperm injection using DNA Fragmented sperm in mice negatively affects embryo-derived embryonic stem cells, reduces the fertility of male offspring and induces heritable changes in epialleles. PLoS One. 2014;9:e95625.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rakyan VK, Chong S, Champ ME, Cuthbert PC, Morgan HD, Luu KV, Whitelaw E. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci U S A. 2003;100:2538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wakayama T, Yanagimachi R. Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat Biotechnol. 1998;16:639–41.

    Article  CAS  PubMed  Google Scholar 

  47. Fraser L, Strzeżek J, Kordan W. Post-thaw sperm characteristics following long-term storage of boar semen in liquid nitrogen. Anim Reprod Sci. 2014;147:119–27.

    Article  CAS  PubMed  Google Scholar 

  48. Simon L, Murphy K, Shamsi MB, Liu L, Emery B, Aston KI, Hotaling J, Carrel DT. Paternal influence of sperm DNA integrity on early embryonic development. Hum Reprod. 2014;29:2402–12.

    Article  CAS  PubMed  Google Scholar 

  49. Kaneko T, Whittingham DG, Overstreet JW, Yanagimachi R. Tolerance of the mouse sperm nuclei to freeze-drying depends on their disulfide status. Biol Reprod. 2003;69:1859–62.

    Article  CAS  PubMed  Google Scholar 

  50. Yildiz C, Law N, Ottaviani P, Jarvi K, McKerlie C. Comparison of sperm quality and DNA integrity in mouse sperm exposed to various cooling velocities and osmotic stress. Theriogenology. 2010;74:1420–30.

    Article  CAS  PubMed  Google Scholar 

  51. McCarthy MJ, Baumber J, Kass PH, Meyers SA. Osmotic stress induces oxidative cell damage to rhesus macaque spermatozoa. Biol Reprod. 2010;82:644–51.

    Article  CAS  PubMed  Google Scholar 

  52. Yildiz C, Ottaviani P, Law N, Ayearst R, Liu L, McKerlie C. Effects of cryopreservation on sperm quality, nuclear DNA integrity, in vitro fertilization, and in vitro embryo development in the mouse. Reproduction. 2007;133:585–95.

    Article  CAS  PubMed  Google Scholar 

  53. Taşdemir U, Büyükleblebici S, Tuncer PB, Coşkun E, Ozgürtaş T, Aydın FN, Büyükleblebici O, Gürcan IS. Effects of various cryoprotectants on bull sperm quality, DNA integrity and oxidative stress parameters. Cryobiology. 2013;66:38–42.

    Article  PubMed  Google Scholar 

  54. Donnelly ET, Steele EK, McClure N, Lewis SE. Assessment of DNA integrity and morphology of ejaculated spermatozoa from fertile and infertile men before and after cryopreservation. Hum Reprod. 2001;16:1191–9.

    Article  CAS  PubMed  Google Scholar 

  55. Gürler H, Malama E, Heppelmann M, Calisici O, Leiding C, Kastelic JP, Bollwein H. Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species, and DNA damage of bovine sperm. Theriogenology. 2016;86:562–71.

    Article  PubMed  Google Scholar 

  56. Balhorn R. A model for the structure of chromatin in mammalian sperm. J Cell Biol. 1982;93:298–305.

    Article  CAS  PubMed  Google Scholar 

  57. Ward MA, Ward WS. A model for the function of sperm DNA degradation. Reprod Fertil Dev. 2004;16:547–54.

    Article  CAS  PubMed  Google Scholar 

  58. Evenson DP, Jost LK, Varner DD. Relationship between sperm nuclear protamine free -SH status and susceptibility to DNA denaturation. J Reprod Fertil Suppl. 2000:14(3):199–204.

    Google Scholar 

  59. Sotolongo B, Lino E, Ward WS. Ability of hamster spermatozoa to digest their own DNA. Biol Reprod. 2003;69:2029–35.

    Article  CAS  PubMed  Google Scholar 

  60. Maione B, Pittoggi C, Achene L, Lorenzini R, Spadafora C. Activation of endogenous nucleases in mature sperm cells upon interaction with exogenous DNA. DNA Cell Biol. 1997;16:1087–97.

    Article  CAS  PubMed  Google Scholar 

  61. Kusakabe H, Szczygiel MA, Whittingham DG, Yanagimachi R. Maintenance of genetic integrity in frozen and freeze-dried mouse spermatozoa. Proc Natl Acad Sci U S A. 2001;98:13501–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Szczygiel MA, Ward WS. Combination of dithiothreitol and detergent treatment of spermatozoa causes paternal chromosomal damage. Biol Reprod. 2002;67:1532–7.

    Article  CAS  PubMed  Google Scholar 

  63. Johnston SD, Satake N, Zee Y, López-Fernández C, Holt WV, Gosálvez J. Osmotic stress and cryoinjury of koala sperm: an integrative study of the plasma membrane, chromatin stability and mitochondrial function. Reproduction. 2012;143:787–97.

    Article  CAS  PubMed  Google Scholar 

  64. Amidi F, Pazhohan A, Shabani Nashtaei M, Khodarahmian M, Nekoonam S. The role of antioxidants in sperm freezing: a review. Cell Tissue Bank. 2016;17:745–56.

    Article  CAS  PubMed  Google Scholar 

  65. Sikka SC. Oxidative stress and role of antioxidants in normal and abnormal sperm function. Front Biosci. 1996;1:e78–86.

    Article  CAS  PubMed  Google Scholar 

  66. Peeker R, Abramsson L, Marklund SL. Superoxide dismutase isoenzymes in human seminal plasma and spermatozoa. Mol Hum Reprod. 1997;3:1061–6.

    Article  CAS  PubMed  Google Scholar 

  67. Bansal AK, Bilaspuri GS. Impacts of oxidative stress and antioxidants on semen functions. Vet Med Int. 2010;2010:686137.

    PubMed  Google Scholar 

  68. Ortega Ferrusola C, González Fernández L, Macías García B, Salazar-Sandoval C, Morillo Rodríguez A, Rodríguez Martinez H, Tapia JA, Peña FJ. Effect of cryopreservation on nitric oxide production by stallion spermatozoa. Biol Reprod. 2009;81:1106–11.

    Article  CAS  PubMed  Google Scholar 

  69. Baumber J, Ball BA, Linfor JJ, Meyers SA. Reactive oxygen species and cryopreservation promote DNA fragmentation in equine spermatozoa. J Androl. 2003;24:621–8.

    Article  CAS  PubMed  Google Scholar 

  70. Said TM, Gaglani A, Agarwal A. Implication of apoptosis in sperm cryoinjury. Reprod Biomed Online. 2010;21:456–62.

    Article  PubMed  Google Scholar 

  71. Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at −196 °C by vitrification. Nature. 1985;313:573–5.

    Article  CAS  PubMed  Google Scholar 

  72. Ali Mohamed MS. Slow cryopreservation is not superior to vitrification in human spermatozoa; an experimental controlled study. Iran J Reprod Med. 2015;13:633–44.

    PubMed  PubMed Central  Google Scholar 

  73. Valcarce DG, Cartón-García F, Riesco MF, Herráez MP, Robles V. Analysis of DNA damage after human sperm cryopreservation in genes crucial for fertilization and early embryo development. Andrology. 2013;1:723–30.

    Article  CAS  PubMed  Google Scholar 

  74. Pradiee J, Esteso MC, Castaño C, Toledano-Díaz A, Lopez-Sebastián A, Guerra R, Santiago-Moreno J. Conventional slow freezing cryopreserves mouflon spermatozoa better than vitrification. Andrologia. 2017;49(3):e12629.

    Google Scholar 

  75. Fernández-Gago R, Álvarez-Rodríguez M, Alonso ME, González JR, Alegre B, Domínguez JC, Martínez-Pastor F. Thawing boar semen in the presence of seminal plasma improves motility, modifies subpopulation patterns and reduces chromatin alterations. Reprod Fertil Dev. 2017;29(8):1576–1584.

    Google Scholar 

  76. Patel M, Gandotra VK, Cheema RS, Bansal AK, Kumar A. Seminal plasma heparin binding proteins improve semen quality by reducing oxidative stress during cryopreservation of cattle bull semen. Asian-Australasian J Anim Sci. 2016;29:1247–55.

    Article  CAS  Google Scholar 

  77. Treulen F, Sánchez R, Risopatrón J. Effects of seminal fluid fractions on plasma and acrosome membrane integrity and mitochondrial membrane potential determined by flow cytometry in chilled canine spermatozoa. Reprod Domest Anim. 2012;47:1043–8.

    Article  CAS  PubMed  Google Scholar 

  78. Schjenken JE, Robertson SA. Seminal fluid signalling in the female reproductive tract: implications for reproductive success and offspring health. Adv Exp Med Biol. 2015;868:127–58.

    Article  PubMed  Google Scholar 

  79. Agha-Rahimi A, Khalili MA, Nottola SA, Miglietta S, Moradi A. Cryoprotectant-free vitrification of human spermatozoa in new artificial seminal fluid. Andrology. 2016;4(6):1037–1044.

    Google Scholar 

  80. Gianaroli L, Magli MC, Stanghellini I, Crippa A, Crivello AM, Pescatori ES, Ferraretti AP. DNA integrity is maintained after freeze-drying of human spermatozoa. Fertil Steril. 2012;97:1067–73. e1

    Article  CAS  PubMed  Google Scholar 

  81. Holt WV, Van Look KJ. Concepts in sperm heterogeneity, sperm selection and sperm competition as biological foundations for laboratory tests of semen quality. Reproduction. 2004;127:527–35.

    Article  CAS  PubMed  Google Scholar 

  82. Pérez-Cerezales S, Martínez-Páramo S, Beirão J, Herráez MP. Fertilization capacity with rainbow trout DNA-damaged sperm and embryo developmental success. Reproduction. 2010;139:989–97.

    Article  PubMed  Google Scholar 

  83. Reinardy HC, Syrett JR, Jeffree RA, Henry TB, Jha AN. Cobalt-induced genotoxicity in male zebrafish (Danio rerio), with implications for reproduction and expression of DNA repair genes. Aquat Toxicol. 2013;126:224–30.

    Article  CAS  PubMed  Google Scholar 

  84. Smith TB, Dun MD, Smith ND, Curry BJ, Connaughton HS, Aitken RJ. The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1. J Cell Sci. 2013;126:1488–97.

    Article  CAS  PubMed  Google Scholar 

  85. Derijck A, van der Heijden G, Giele M, Philippens M, de Boer P. DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum Mol Genet. 2008;17:1922–37.

    Article  CAS  PubMed  Google Scholar 

  86. Mitra S, Boldogh I, Izumi T, Hazra TK. Complexities of the DNA base excision repair pathway for repair of oxidative DNA damage. Environ Mol Mutagen. 2001;38:180–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bladen CL, Lam WK, Dynan WS, Kozlowski DJ. DNA damage response and Ku80 function in the vertebrate embryo. Nucleic Acids Res. 2005;33:3002–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ahmadi A, Ng SC. Fertilizing ability of DNA-damaged spermatozoa. J Exp Zool. 1999;284:696–704.

    Article  CAS  PubMed  Google Scholar 

  89. Pérez-Cerezales S, Gutiérrez-Adán A, Martínez-Páramo S, Beirão J, Herráez MP. Altered gene transcription and telomere length in trout embryo and larvae obtained with DNA cryodamaged sperm. Theriogenology. 2011;76:1234–45.

    Article  PubMed  Google Scholar 

  90. Ocalewicz K, Babiak I, Dobosz S, Nowaczyk J, Goryczko K. The stability of telomereless chromosome fragments in adult androgenetic rainbow trout. J Exp Biol. 2004;207:2229–36.

    Article  CAS  PubMed  Google Scholar 

  91. Fernández-Díez C, González-Rojo S, Montfort J, Le Cam A, Bobe J, Robles V, Pérez-Cerezales S, Herráez MP. Inhibition of zygotic DNA repair: transcriptome analysis of the offspring in trout (Oncorhynchus mykiss). Reproduction. 2015;149:101–11.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Gutiérrez-Adan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perez-Cerezales, S. et al. (2018). Experimental Studies on Sperm DNA Fragmentation and Reproductive Outcomes. In: Zini, A., Agarwal, A. (eds) A Clinician's Guide to Sperm DNA and Chromatin Damage. Springer, Cham. https://doi.org/10.1007/978-3-319-71815-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71815-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71814-9

  • Online ISBN: 978-3-319-71815-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics