Advertisement

Integration of Synaptic and Intrinsic Conductances Shapes Microcircuits in the Superior Olivary Complex

  • Conny Kopp-ScheinpflugEmail author
  • Ian D. Forsythe
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 65)

Abstract

The superior olivary complex is a group of interconnected brainstem nuclei that receive and integrate binaural auditory input. Each nucleus forms part of local microcircuits subserving multiple complimentary roles in auditory processing, including sound localization, detection of signals in noise, and gap detection. The three nuclei of the trapezoid body (medial, lateral, and ventral) provide indirect inhibitory local projections that are integrated with direct excitatory inputs from the cochlear nuclei at the three output nuclei (the medial and lateral superior olivary nuclei and the superior paraolivary nucleus). Each nucleus expresses a different spectrum of ionic conductances that determine the intrinsic excitability of their principal neurons and adapt how the microcircuit integrates the binaural excitatory and inhibitory synaptic inputs. Specialized synapses, such as the calyx of Held, help maintain temporal information and minimize jitter, while the location of synapses on specific dendrites or somatic regions provides further refinement of the microcircuit. This chapter also includes how the principal neurons of each nucleus express differing densities of ionic conductance by which they exhibit a unique threshold, action potential waveform, and characteristic firing properties. A broad perspective will be provided on how each of these functional elements come together to sculpt the local neuronal microcircuit into performing specific physiological roles for interaural timing discrimination, interaural level discrimination, and gap detection.

Keywords

Calyx of Held Lateral nucleus of the trapezoid body Lateral superior olive Medial nucleus of the trapezoid body Medial superior olive Superior paraolivary nucleus Ventral nucleus of the trapezoid body 

References

  1. Adam, T. J., Schwarz, D. W., & Finlayson, P. G. (1999). Firing properties of chopper and delay neurons in the lateral superior olive of the rat. Experimental Brain Research, 124(4), 489–502.PubMedCrossRefGoogle Scholar
  2. Alamilla, J., & Gillespie, D. C. (2013). Maturation of calcium-dependent GABA, glycine, and glutamate release in the glycinergic MNTB-LSO pathway. PLoS One, 8(9), e75688.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Albrecht, O., Dondzillo, A., Mayer, F., Thompson, J. A., & Klug, A. (2014). Inhibitory projections from the ventral nucleus of the trapezoid body to the medial nucleus of the trapezoid body in the mouse. Frontiers in Neural Circuits, 8, 83.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Altieri, S. C., Zhao, T., Jalabi, W., & Maricich, S. M. (2014). Development of glycinergic innervation to the murine LSO and SPN in the presence and absence of the MNTB. Frontiers in Neural Circuits, 8, 109.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anderson, L. A., & Linden, J. F. (2016). Mind the gap: Two dissociable mechanisms of temporal processing in the auditory system. The Journal of Neuroscience, 366(6), 1977–1995.CrossRefGoogle Scholar
  6. Aubie, B., Sayegh, R., & Faure, P. A. (2012). Duration tuning across vertebrates. The Journal of Neuroscience, 32(18), 6373–6390.PubMedCrossRefGoogle Scholar
  7. Awatramani, G. B., Turecek, R., & Trussell, L. O. (2005). Staggered development of GABAergic and glycinergic transmission in the MNTB. Journal of Neurophysiology, 93(2), 819–828.PubMedCrossRefGoogle Scholar
  8. Bajo, V. M., Merchan, M. A., Lopez, D. E., & Rouiller, E. M. (1993). Neuronal morphology and efferent projections of the dorsal nucleus of the lateral lemniscus in the rat. Journal of Comparative Neurology, 334(2), 241–262.PubMedCrossRefGoogle Scholar
  9. Banks, M. I., Pearce, R. A., & Smith, P. H. (1993). Hyperpolarization-activated cation current (Ih) in neurons of the medial nucleus of the trapezoid body: Voltage-clamp analysis and enhancement by norepinephrine and cAMP suggest a modulatory mechanism in the auditory brain stem. Journal of Neurophysiology, 70(4), 1420–1432.PubMedCrossRefGoogle Scholar
  10. Banks, M. I., & Smith, P. H. (1992). Intracellular recordings from neurobiotin-labeled cells in brain slices of the rat medial nucleus of the trapezoid body. The Journal of Neuroscience, 12(7), 2819–2837.PubMedGoogle Scholar
  11. Barnes-Davies, M., Barker, M. C., Osmani, F., & Forsythe, I. D. (2004). Kv1 currents mediate a gradient of principal neuron excitability across the tonotopic axis in the rat lateral superior olive. European Journal of Neuroscience, 19(2), 325–333.PubMedCrossRefGoogle Scholar
  12. Barnes-Davies, M., Owens, S., & Forsythe, I. D. (2001). Calcium channels triggering transmitter release in the rat medial superior olive. Hearing Research, 1662(1–2), 134–145.CrossRefGoogle Scholar
  13. Baumann, V. J., Lehnert, S., Leibold, C., & Koch, U. (2013). Tonotopic organization of the hyperpolarization-activated current (Ih) in the mammalian medial superior olive. Frontiers in Neural Circuits, 7, 117.  https://doi.org/10.3389/fncir.2013.00117.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Behrend, O., Brand, A., Kapfer, C., & Grothe, B. (2002). Auditory response properties in the superior paraolivary nucleus of the gerbil. Journal of Neurophysiology, 87(6), 2915–2928.PubMedCrossRefGoogle Scholar
  15. Bollmann, J. H., Helmchen, F., Borst, J. G., & Sakmann, B. (1998). Postsynaptic Ca2+ influx mediated by three different pathways during synaptic transmission at a calyx-type synapse. The Journal of Neuroscience, 18(24), 10409–10419.PubMedGoogle Scholar
  16. Brand, A., Behrend, O., Marquardt, T., McAlpine, D., & Grothe, B. (2002). Precise inhibition is essential for microsecond interaural time difference coding. Nature, 417(6888), 543–547.PubMedCrossRefGoogle Scholar
  17. Brew, H. M., & Forsythe, I. D. (1995). Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse. The Journal of Neuroscience, 15(12), 8011–8022.PubMedGoogle Scholar
  18. Brew, H. M., & Forsythe, I. D. (2005). Systematic variation of potassium current amplitudes across the tonotopic axis of the rat medial nucleus of the trapezoid body. Hearing Research, 2066(1–2), 116–132.CrossRefGoogle Scholar
  19. Carr, C. E., & Konishi, M. (1988). Axonal delay lines for time measurement in the owl's brainstem. Proceedings of the National Academy of Sciences of the United States of America, 85(21), 8311–8315.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Case, D. T., & Gillespie, D. C. (2011). Pre- and postsynaptic properties of glutamatergic transmission in the immature inhibitory MNTB-LSO pathway. Journal of Neurophysiology, 1066(5), 2570–2579.CrossRefGoogle Scholar
  21. Case, D. T., Zhao, X., & Gillespie, D. C. (2011). Functional refinement in the projection from ventral cochlear nucleus to lateral superior olive precedes hearing onset in rat. PLoS One, 66(6), e20756.CrossRefGoogle Scholar
  22. Couchman, K., Grothe, B., & Felmy, F. (2010). Medial superior olivary neurons receive surprisingly few excitatory and inhibitory inputs with balanced strength and short-term dynamics. Journal of Neuroscience, 30(50), 17111–17121.PubMedCrossRefGoogle Scholar
  23. Couchman, K., Grothe, B., & Felmy, F. (2012). Functional localization of neurotransmitter receptors and synaptic inputs to mature neurons of the medial superior olive. Journal of Neurophysiology, 107(4), 1186–1198.PubMedCrossRefGoogle Scholar
  24. Darrow, K. N., Maison, S. F., & Liberman, M. C. (2006). Cochlear efferent feedback balances interaural sensitivity. Nature Neuroscience, 9(12), 1474–1476.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dehmel, S., Kopp-Scheinpflug, C., Dorrscheidt, G. J., & Rubsamen, R. (2002). Electrophysiological characterization of the superior paraolivary nucleus in the Mongolian gerbil. Hearing Research, 172(1–2), 18–36.PubMedCrossRefGoogle Scholar
  26. Dondzillo, A., Thompson, J. A., & Klug, A. (2016). Recurrent inhibition to the medial nucleus of the trapezoid body in the mongolian gerbil (Meriones unguiculatus). PLoS One, 11(8), e0160241.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Felix, R. A., 2nd, Fridberger, A., Leijon, S., Berrebi, A. S., & Magnusson, A. K. (2011). Sound rhythms are encoded by postinhibitory rebound spiking in the superior paraolivary nucleus. The Journal of Neuroscience, 31(35), 12566–12578.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Felix, R. A., 2nd, Vonderschen, K., Berrebi, A. S., & Magnusson, A. K. (2013). Development of on-off spiking in superior paraolivary nucleus neurons of the mouse. Journal of Neurophysiology, 109(11), 2691–2704.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fischl, M. J., Burger, R. M., Schmidt-Pauly, M., Alexandrova, O., Sinclair, J. L., Grothe, B., et al. (2016). Physiology and anatomy of neurons in the medial superior olive of the mouse. Journal of Neurophysiology, 1166(6), 2676–2688.CrossRefGoogle Scholar
  30. Fischl, M. J., Combs, T. D., Klug, A., Grothe, B., & Burger, R. M. (2012). Modulation of synaptic input by GABAB receptors improves coincidence detection for computation of sound location. The Journal of Physiology, 590(13), 3047–3066.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Ford, M. C., Alexandrova, O., Cossell, L., Stange-Marten, A., Sinclair, J., Kopp-Scheinpflug, C., et al. (2015). Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nature Communications, 66, 8073.CrossRefGoogle Scholar
  32. Forsythe, I. D. (1994). Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. The Journal of Physiology, 479(3), 381–387.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Friauf, E., & Ostwald, J. (1988). Divergent projections of physiologically characterized rat ventral cochlear nucleus neurons as shown by intra-axonal injection of horseradish peroxidase. Experimental Brain Research, 73(2), 263–284.PubMedCrossRefGoogle Scholar
  34. Fujino, K., Koyano, K., & Ohmori, H. (1997). Lateral and medial olivocochlear neurons have distinct electrophysiological properties in the rat brain slice. Journal of Neurophysiology, 77(5), 2788–2804.PubMedCrossRefGoogle Scholar
  35. Giugovaz-Tropper, B., Gonzalez-Inchauspe, C., Di Guilmi, M. N., Urbano, F. J., Forsythe, I. D., & Uchitel, O. D. (2011). P/Q-type calcium channel ablation in a mice glycinergic synapse mediated by multiple types of Ca(2)+ channels alters transmitter release and short term plasticity. Neuroscience, 192, 219–230.PubMedCrossRefGoogle Scholar
  36. Grothe, B. (2000). The evolution of temporal processing in the medial superior olive, an auditory brainstem structure. Progress in Neurobiology, 661(6), 581–610.CrossRefGoogle Scholar
  37. Grothe, B. (2003). New roles for synaptic inhibition in sound localization. Nature Reviews. Neuroscience, 4(7), 540–550.PubMedCrossRefGoogle Scholar
  38. Grothe, B., Covey, E., & Casseday, J. H. (2001). Medial superior olive of the big brown bat: Neuronal responses to pure tones, amplitude modulations, and pulse trains. Journal of Neurophysiology, 866(5), 2219–2230.CrossRefGoogle Scholar
  39. Grothe, B., & Pecka, M. (2014). The natural history of sound localization in mammals—A story of neuronal inhibition. Frontiers in Neural Circuits, 8, 116.  https://doi.org/10.3389/fncir.2014.00116.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Grothe, B., Pecka, M., & McAlpine, D. (2010). Mechanisms of sound localization in mammals. Physiological Reviews, 90(3), 983–1012.PubMedCrossRefGoogle Scholar
  41. Guinan, J. J., Jr., & Li, R. Y. (1990). Signal processing in brainstem auditory neurons which receive giant endings (calyces of Held) in the medial nucleus of the trapezoid body of the cat. Hearing Research, 49(1–3), 321–334.PubMedCrossRefGoogle Scholar
  42. Hamann, M., Billups, B., & Forsythe, I. D. (2003). Non-calyceal excitatory inputs mediate low fidelity synaptic transmission in rat auditory brainstem slices. European Journal of Neuroscience, 18(10), 2899–2902.PubMedCrossRefGoogle Scholar
  43. Hardman, R. M., & Forsythe, I. D. (2009). Ether-á-go-go-related gene K+ channels contribute to threshold excitability of mouse auditory brainstem neurons. The Journal of Physiology, 587(11), 2487–2497.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hassfurth, B., Magnusson, A. K., Grothe, B., & Koch, U. (2009). Sensory deprivation regulates the development of the hyperpolarization-activated current in auditory brainstem neurons. European Journal of Neuroscience, 30(7), 1227–1238.PubMedCrossRefGoogle Scholar
  45. Held, H. (1893). Die centrale Gehörleitung. Archiv für Anatomie und Physiologie/Anatomische Abteilung, 1893, 201–248. https://core.ac.uk/download/pdf/14520980.pdf.Google Scholar
  46. Helfert, R. H., & Schwartz, I. R. (1987). Morphological features of five neuronal classes in the gerbil lateral superior olive. American Journal of Anatomy, 179(1), 55–69.PubMedCrossRefGoogle Scholar
  47. Hirtz, J. J., Boesen, M., Braun, N., Deitmer, J. W., Kramer, F., Lohr, C., et al. (2011). Cav1.3 calcium channels are required for normal development of the auditory brainstem. The Journal of Neuroscience, 31(22), 8280–8294.PubMedCrossRefGoogle Scholar
  48. Holcomb, P. S., Deerinck, T. J., Ellisman, M. H., & Spirou, G. A. (2013). Construction of a polarized neuron. The Journal of Physiology, 591(13), 3145–3150.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Jalabi, W., Kopp-Scheinpflug, C., Allen, P. D., Schiavon, E., DiGiacomo, R. R., Forsythe, I. D., et al. (2013). Sound localization ability and glycinergic innervation of the superior olivary complex persist after genetic deletion of the medial nucleus of the trapezoid body. The Journal of Neuroscience, 33(38), 15044–15049.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Jeffress, L. A. (1948). A place theory of sound localization. Journal of Comparative and Physiological Psychology, 41(1), 35–39.PubMedCrossRefGoogle Scholar
  51. Johnston, J., Forsythe, I. D., & Kopp-Scheinpflug, C. (2010). Going native: Voltage-gated potassium channels controlling neuronal excitability. The Journal of Physiology, 588(17), 3187–3200.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Johnston, J., Griffin, S. J., Baker, C., Skrzypiec, A., Chernova, T., & Forsythe, I. D. (2008). Initial segment Kv2.2 channels mediate a slow delayed rectifier and maintain high frequency action potential firing in medial nucleus of the trapezoid body neurons. The Journal of Physiology, 5866(14), 3493–3509.CrossRefGoogle Scholar
  53. Kadner, A., & Berrebi, A. S. (2008). Encoding of temporal features of auditory stimuli in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat. Neuroscience, 151(3), 868–887.PubMedCrossRefGoogle Scholar
  54. Kadner, A., Kulesza, R. J., Jr., & Berrebi, A. S. (2006). Neurons in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat may play a role in sound duration coding. Journal of Neurophysiology, 95(3), 1499–1508.PubMedCrossRefGoogle Scholar
  55. Kandler, K., Clause, A., & Noh, J. (2009). Tonotopic reorganization of developing auditory brainstem circuits. Nature Neuroscience, 12(6), 711–717.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kapfer, C., Seidl, A. H., Schweizer, H., & Grothe, B. (2002). Experience-dependent refinement of inhibitory inputs to auditory coincidence-detector neurons. Nature Neuroscience, 5(3), 247–253.PubMedCrossRefGoogle Scholar
  57. Karcz, A., Hennig, M. H., Robbins, C. A., Tempel, B. L., Rübsamen, R., & Kopp-Scheinpflug, C. (2011). Low-voltage activated Kv1.1 subunits are crucial for the processing of sound source location in the lateral superior olive in mice. The Journal of Physiology, 589(5), 1143–1157.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kim, G., & Kandler, K. (2003). Elimination and strengthening of glycinergic/GABAergic connections during tonotopic map formation. Nature Neuroscience, 66(3), 282–290.CrossRefGoogle Scholar
  59. Kim, J. H., Kushmerick, C., & von Gersdorff, H. (2010). Presynaptic resurgent Na+ currents sculpt the action potential waveform and increase firing reliability at a CNS nerve terminal. The Journal of Neuroscience, 30(46), 15479–15490.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Koch, U., Braun, M., Kapfer, C., & Grothe, B. (2004). Distribution of HCN1 and HCN2 in rat auditory brainstem nuclei. European Journal of Neuroscience, 20(1), 79–91.PubMedCrossRefGoogle Scholar
  61. Koike-Tani, M., Saitoh, N., & Takahashi, T. (2005). Mechanisms underlying developmental speeding in AMPA-EPSC decay time at the calyx of Held. The Journal of Neuroscience, 25(1), 199–207.PubMedCrossRefGoogle Scholar
  62. Koka, K., & Tollin, D. J. (2014). Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs. Frontiers in Neural Circuits, 8, 144.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kolston, J., Osen, K. K., Hackney, C. M., Ottersen, O. P., & Storm-Mathisen, J. (1992). An atlas of glycine- and GABA-like immunoreactivity and colocalization in the cochlear nuclear complex of the guinea pig. Anatomy and Embryology (Berlin), 1866(5), 443–465.Google Scholar
  64. Kopp-Scheinpflug, C., Dehmel, S., Tolnai, S., Dietz, B., Milenkovic, I., & Rübsamen, R. (2008). Glycine-mediated changes of onset reliability at a mammalian central synapse. Neuroscience, 157(2), 432–445.PubMedCrossRefGoogle Scholar
  65. Kopp-Scheinpflug, C., Lippe, W. R., Dorrscheidt, G. J., & Rubsamen, R. (2003). The medial nucleus of the trapezoid body in the gerbil is more than a relay: Comparison of pre- and postsynaptic activity. Journal of the Association for Research in Otolaryngology, 4(1), 1–23.PubMedCrossRefGoogle Scholar
  66. Kopp-Scheinpflug, C., Pigott, B. M., & Forsythe, I. D. (2015). Nitric oxide selectively suppresses IH currents mediated by HCN1-containing channels. The Journal of Physiology, 593(7), 1685–1700.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kopp-Scheinpflug, C., Tozer, A. J., Robinson, S. W., Tempel, B. L., Hennig, M. H., & Forsythe, I. D. (2011). The sound of silence: Ionic mechanisms encoding sound termination. Neuron, 71(5), 911–925.PubMedCrossRefGoogle Scholar
  68. Kulesza, R. J., Jr., & Berrebi, A. S. (2000). Superior paraolivary nucleus of the rat is a GABAergic nucleus. Journal of the Association for Research in Otolaryngology, 1(4), 255–269.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kulesza, R. J., Jr., & Grothe, B. (2015). Yes, there is a medial nucleus of the trapezoid body in humans. Frontiers in Neuroanatomy, 9, 35.  https://doi.org/10.3389/fnana.2015.00035.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kulesza, R. J., Jr., Spirou, G. A., & Berrebi, A. S. (2003). Physiological response properties of neurons in the superior paraolivary nucleus of the rat. Journal of Neurophysiology, 89(4), 2299–2312.PubMedCrossRefGoogle Scholar
  71. Kuwabara, N., DiCaprio, R. A., & Zook, J. M. (1991). Afferents to the medial nucleus of the trapezoid body and their collateral projections. The Journal of Comparative Neurology, 314(4), 684–706.PubMedCrossRefGoogle Scholar
  72. Kuwabara, N., & Zook, J. M. (1991). Classification of the principal cells of the medial nucleus of the trapezoid body. The Journal of Comparative Neurology, 314(4), 707–720.PubMedCrossRefGoogle Scholar
  73. Kuwabara, N., & Zook, J. M. (1999). Local collateral projections from the medial superior olive to the superior paraolivary nucleus in the gerbil. Brain Research, 8466(1), 59–71.CrossRefGoogle Scholar
  74. Leao, R. N., Naves, M. M., Leao, K. E., & Walmsley, B. (2006). Altered sodium currents in auditory neurons of congenitally deaf mice. European Journal of Neuroscience, 24(4), 1137–1146.PubMedCrossRefGoogle Scholar
  75. Leao, R. N., Svahn, K., Berntson, A., & Walmsley, B. (2005). Hyperpolarization-activated (I) currents in auditory brainstem neurons of normal and congenitally deaf mice. European Journal of Neuroscience, 22(1), 147–157.PubMedCrossRefGoogle Scholar
  76. Lehnert, S., Ford, M. C., Alexandrova, O., Hellmundt, F., Felmy, F., Grothe, B., et al. (2014). Action potential generation in an anatomically constrained model of medial superior olive axons. The Journal of Neuroscience, 34(15), 5370–5384.PubMedCrossRefGoogle Scholar
  77. Li, L., & Kelly, J. B. (1992). Binaural responses in rat inferior colliculus following kainic acid lesions of the superior olive: Interaural intensity difference functions. Hearing Research, 661(1–2), 73–85.CrossRefGoogle Scholar
  78. Li, W., Kaczmarek, L. K., & Perney, T. M. (2001). Localization of two high-threshold potassium channel subunits in the rat central auditory system. Journal of Comparative Neurology, 437(2), 196–218.PubMedCrossRefGoogle Scholar
  79. Magnusson, A. K., Park, T. J., Pecka, M., Grothe, B., & Koch, U. (2008). Retrograde GABA signaling adjusts sound localization by balancing excitation and inhibition in the brainstem. Neuron, 59(1), 125–137.PubMedCrossRefGoogle Scholar
  80. Mathews, P. J., Jercog, P. E., Rinzel, J., Scott, L. L., & Golding, N. L. (2010). Control of submillisecond synaptic timing in binaural coincidence detectors by K(v)1 channels. Nature Neuroscience, 13(5), 601–609.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Moore, J. K., & Moore, R. Y. (1987). Glutamic acid decarboxylase-like immunoreactivity in brainstem auditory nuclei of the rat. The Journal of Comparative Neurology, 2660(2), 157–174.CrossRefGoogle Scholar
  82. Myoga, M. H., Lehnert, S., Leibold, C., Felmy, F., & Grothe, B. (2014). Glycinergic inhibition tunes coincidence detection in the auditory brainstem. Nature Communications, 5, 3790.  https://doi.org/10.1038/ncomms4790.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Oertel, D. (2009). A team of potassium channels tunes up auditory neurons. The Journal of Physiology, 587(11), 2417–2418.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Pecka, M., Brand, A., Behrend, O., & Grothe, B. (2008). Interaural time difference processing in the mammalian medial superior olive: The role of glycinergic inhibition. The Journal of Neuroscience, 28(27), 6914–6925.PubMedCrossRefGoogle Scholar
  85. Pilati, N., Linley, D. M., Selvaskandan, H., Uchitel, O., Hennig, M. H., Kopp-Scheinpflug, C., et al. (2016). Acoustic trauma slows AMPA receptor-mediated EPSCs in the auditory brainstem, reducing GluA4 subunit expression as a mechanism to rescue binaural function. The Journal of Physiology, 594(13), 3683–3703.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Roberts, M. T., Seeman, S. C., & Golding, N. L. (2014). The relative contributions of MNTB and LNTB neurons to inhibition in the medial superior olive assessed through single and paired recordings. Frontiers in Neural Circuits, 8, 49.  https://doi.org/10.3389/fncir.2014.00049.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Roberts, R. C., & Ribak, C. E. (1987). GABAergic neurons and axon terminals in the brainstem auditory nuclei of the gerbil. The Journal of Comparative Neurology, 258(2), 267–280.PubMedCrossRefGoogle Scholar
  88. Ryugo, D. K., Fay, R. R., & Popper, A. N. (Eds.). (2011). Auditory and vestibular efferents. New York: Springer.Google Scholar
  89. Schneggenburger, R., & Forsythe, I. D. (2006). The calyx of Held. Cell and Tissue Research, 3266(2), 311–337. [Research Support Non-U.S. Gov’t Review].CrossRefGoogle Scholar
  90. Schofield, B. R. (1991). Superior paraolivary nucleus in the pigmented guinea pig: Separate classes of neurons project to the inferior colliculus and the cochlear nucleus. The Journal of Comparative Neurology, 312(1), 68–76.PubMedCrossRefGoogle Scholar
  91. Schofield, B. R. (1995). Projections from the cochlear nucleus to the superior paraolivary nucleus in guinea pigs. Journal of Comparative Neurology, 3660(1), 135–149.CrossRefGoogle Scholar
  92. Schofield, B. R., & Cant, N. B. (1991). Organization of the superior olivary complex in the guinea pig. I. Cytoarchitecture, cytochrome oxidase histochemistry, and dendritic morphology. The Journal of Comparative Neurology, 314(4), 645–670.PubMedCrossRefGoogle Scholar
  93. Schofield, B. R., & Cant, N. B. (1992). Organization of the superior olivary complex in the guinea pig: II. Patterns of projection from the periolivary nuclei to the inferior colliculus. The Journal of Comparative Neurology, 317(4), 438–455.PubMedCrossRefGoogle Scholar
  94. Schofield, B. R., Mellott, J. G., & Motts, S. D. (2014). Subcollicular projections to the auditory thalamus and collateral projections to the inferior colliculus. Frontiers in Neuroanatomy, 8, 70.  https://doi.org/10.3389/fnana.2014.00070.PubMedPubMedCentralGoogle Scholar
  95. Scott, L. L., Mathews, P. J., & Golding, N. L. (2005). Posthearing developmental refinement of temporal processing in principal neurons of the medial superior olive. The Journal of Neuroscience, 25(35), 7887–7895.PubMedCrossRefGoogle Scholar
  96. Seidl, A. H., & Rubel, E. W. (2016). Systematic and differential myelination of axon collaterals in the mammalian auditory brainstem. Glia, 664(4), 487–494.CrossRefGoogle Scholar
  97. Sinclair, J. L., Barnes-Davies, M., Kopp-Scheinpflug, C., & Forsythe, I. D. (2017a). Strain-specific differences in the development of neuronal excitability in the mouse ventral nucleus of the trapezoid body. Hearing Research, 354, 28–37.PubMedCrossRefGoogle Scholar
  98. Sinclair, J. L., Fischl, M. J., Alexandrova, O., Heß, M., Grothe, B., Leibold, C., et al. (2017b). Sound-evoked activity influences myelination of brainstem axons in the trapezoid body. The Journal of Neuroscience, 37(34), 8239–8255.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Siveke, I., Pecka, M., Seidl, A. H., Baudoux, S., & Grothe, B. (2006). Binaural response properties of low-frequency neurons in the gerbil dorsal nucleus of the lateral lemniscus. Journal of Neurophysiology, 966(3), 1425–1440.CrossRefGoogle Scholar
  100. Smith, A. J., Owens, S., & Forsythe, I. D. (2000). Characterization of inhibitory and excitatory postsynaptic currents of the rat medial superior olive. The Journal of Physiology, 529(3), 681–698.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sommer, I., Lingenhohl, K., & Friauf, E. (1993). Principal cells of the rat medial nucleus of the trapezoid body: An intracellular in vivo study of their physiology and morphology. Experimental Brain Research, 95(2), 223–239.PubMedCrossRefGoogle Scholar
  102. Spirou, G. A., & Berrebi, A. S. (1996). Organization of ventrolateral periolivary cells of the cat superior olive as revealed by PEP-19 immunocytochemistry and Nissl stain. The Journal of Comparative Neurology, 3668(1), 100–120.CrossRefGoogle Scholar
  103. Spirou, G. A., Rowland, K. C., & Berrebi, A. S. (1998). Ultrastructure of neurons and large synaptic terminals in the lateral nucleus of the trapezoid body of the cat. The Journal of Comparative Neurology, 398(2), 257–272.PubMedCrossRefGoogle Scholar
  104. Stange, A., Myoga, M. H., Lingner, A., Ford, M. C., Alexandrova, O., Felmy, F., et al. (2013). Adaptation in sound localization: From GABA(B) receptor-mediated synaptic modulation to perception. Nature Neuroscience, 166(12), 1840–1847.CrossRefGoogle Scholar
  105. Steinert, J. R., Postlethwaite, M., Jordan, M. D., Chernova, T., Robinson, S. W., & Forsythe, I. D. (2010). NMDAR-mediated EPSCs are maintained and accelerate in time course during maturation of mouse and rat auditory brainstem in vitro. The Journal of Physiology, 588(3), 447–463.PubMedCrossRefGoogle Scholar
  106. Steinert, J. R., Robinson, S. W., Tong, H., Haustein, M. D., Kopp-Scheinpflug, C., & Forsythe, I. D. (2011). Nitric oxide is an activity-dependent regulator of target neuron intrinsic excitability. Neuron, 71(2), 291–305.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Sterenborg, J. C., Pilati, N., Sheridan, C. J., Uchitel, O. D., Forsythe, I. D., & Barnes-Davies, M. (2010). Lateral olivocochlear (LOC) neurons of the mouse LSO receive excitatory and inhibitory synaptic inputs with slower kinetics than LSO principal neurons. Hearing Research, 270(1–2), 119–126.PubMedCrossRefGoogle Scholar
  108. Thompson, A. M., & Schofield, B. R. (2000). Afferent projections of the superior olivary complex. Microscopy Research and Techniques, 51(4), 330–354.CrossRefGoogle Scholar
  109. Thompson, A. M., & Thompson, G. C. (1991). Posteroventral cochlear nucleus projections to olivocochlear neurons. The Journal of Comparative Neurology, 303(2), 267–285.PubMedCrossRefGoogle Scholar
  110. Tollin, D. J. (2003). The lateral superior olive: A functional role in sound source localization. The Neuroscientist, 9(2), 127–143.PubMedCrossRefGoogle Scholar
  111. Tolnai, S., Englitz, B., Kopp-Scheinpflug, C., Dehmel, S., Jost, J., & Rübsamen, R. (2008). Dynamic coupling of excitatory and inhibitory responses in the medial nucleus of the trapezoid body. European Journal of Neuroscience, 27(12), 3191–3204.PubMedCrossRefGoogle Scholar
  112. Tong, H., Kopp-Scheinpflug, C., Pilati, N., Robinson, S. W., Sinclair, J. L., Steinert, J. R., et al. (2013). Protection from noise-induced hearing loss by Kv2.2 potassium currents in the central medial olivocochlear system. The Journal of Neuroscience, 33(21), 9113–9121.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Tozer, A. J., Forsythe, I. D., & Steinert, J. R. (2012). Nitric oxide signalling augments neuronal voltage-gated L-type (Ca(v)1) and P/q-type (Ca(v)2.1) channels in the mouse medial nucleus of the trapezoid body. PLoS One, 7(2), e32256.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Tsai, J. J., Koka, K., & Tollin, D. J. (2010). Varying overall sound intensity to the two ears impacts interaural level difference discrimination thresholds by single neurons in the lateral superior olive. Journal of Neurophysiology, 103(2), 875–886.PubMedCrossRefGoogle Scholar
  115. Vinuela, A., Aparicio, M. A., Berrebi, A. S., & Saldana, E. (2011). Connections of the superior paraolivary nucleus of the rat: II. Reciprocal connections with the tectal longitudinal column. Frontiers in Neuroanatomy, 5, 1.  https://doi.org/10.3389/fnana.2011.00001.PubMedPubMedCentralCrossRefGoogle Scholar
  116. von Gersdorff, H., & Borst, J. G. (2002). Short-term plasticity at the calyx of Held. Nature Reviews Neuroscience, 3(1), 53–64.CrossRefGoogle Scholar
  117. Wang, H., Kunkel, D. D., Martin, T. M., Schwartzkroin, P. A., & Tempel, B. L. (1993). Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons. Nature, 3665(6441), 75–79.CrossRefGoogle Scholar
  118. Wang, L. Y., Gan, L., Forsythe, I. D., & Kaczmarek, L. K. (1998). Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. The Journal of Physiology, 509(1), 183–194.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Warr, W. B., & Beck, J. E. (1996). Multiple projections from the ventral nucleus of the trapezoid body in the rat. Hearing Research, 93(1–2), 83–101.PubMedCrossRefGoogle Scholar
  120. Warr, W. B., Boche, J. B., & Neely, S. T. (1997). Efferent innervation of the inner hair cell region: Origins and terminations of two lateral olivocochlear systems. Hearing Research, 108(1–2), 89–111.PubMedCrossRefGoogle Scholar
  121. Weisz, C. J., Rubio, M. E., Givens, R. S., & Kandler, K. (2016). Excitation by axon terminal GABA spillover in a sound localization circuit. The Journal of Neuroscience, 366(3), 911–925.CrossRefGoogle Scholar
  122. Whitley, J. M., & Henkel, C. K. (1984). Topographical organization of the inferior collicular projection and other connections of the ventral nucleus of the lateral lemniscus in the cat. The Journal of Comparative Neurology, 229(2), 257–270.PubMedCrossRefGoogle Scholar
  123. Yang, B., Desai, R., & Kaczmarek, L. K. (2007). Slack and Slick K(Na) channels regulate the accuracy of timing of auditory neurons. The Journal of Neuroscience, 27(10), 2617–2627.PubMedCrossRefGoogle Scholar
  124. Yassin, L., Radtke-Schuller, S., Asraf, H., Grothe, B., Hershfinkel, M., Forsythe, I. D., et al. (2014). Nitric oxide signaling modulates synaptic inhibition in the superior paraolivary nucleus (SPN) via cGMP-dependent suppression of KCC2. Frontiers in Neural Circuits, 8, 65.  https://doi.org/10.3389/fncir.2014.00065.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Division of Neurobiology, Department Biology IILudwig-Maximilians-University MunichPlanegg-MartinsriedGermany
  2. 2.Department of Neuroscience, Psychology and BehaviourUniversity of LeicesterLeicesterUK

Personalised recommendations