Molecular Mechanisms and Therapeutic Strategies in Spinocerebellar Ataxia Type 7

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1049)

Abstract

Spinocerebellar Ataxia type 7 (SCA7, OMIM # 164500) is an autosomal dominant neurodegenerative disorder characterized by adult onset of progressive cerebellar ataxia and blindness. SCA7 is part of the large family of autosomal dominant cerebellar ataxias (ADCAs), and was estimated to account for 1–11.7% of ADCAs in diverse populations. The frequency of SCA7 is higher where local founder effects were observed as in Scandinavia, Korea, South Africa and Mexico. SCA7 is pathomechanistically related to the group of CAG/polyglutamine (polyQ) expansion disorders, which includes other SCAs (1–3, 6 and 17), Huntington’s disease, spinal bulbar muscular atrophy and dentatorubro pallidoluysian atrophy. Two distinctive characteristics of SCA7 are the strong anticipation by which earlier onset and more severe symptoms are observed in successive generations of affected families, and the loss of visual acuity due to cone-rod dystrophy of the retina. The pathology is caused by an unstable CAG repeat expansion coding for a polyQ stretch in Ataxin-7 (ATXN7). PolyQ expansion in ATXN7 confers toxic properties and leads to selective neuronal degeneration in the cerebellum, the brain stem and the retina. Herein, we summarize the genetic, clinical and pathological features of SCA7 and review our current knowledge of pathomechanisms and preclinical studies.

Keywords

Spinocerebellar ataxia 7 Polyglutamine expansion Retinopathy Cerebellar degeneration Aggregation 

Notes

Acknowledgements

We are grateful to Nathalie Daigle for critical reading of the manuscript. YT was supported by funding from Institut National de la Santé et de la Recherche Médicale (INSERM); Centre National de la Recherche Scientifique (CNRS); University of Strasbourg; Retina-France (YT); ANR-10-LABX-0030-INRT from the French state fund through the Agence Nationale de la Recherche (ANR) under the frame programme Investissements d’Avenir ANR-10-IDEX-0002-02; the ANR-Ciliataxia N° ANR-13-BSV1-0016-01; the Fondation pour la recherche médicale (FRM DVS20131228917). AK was supported by fellowships from the fundation Connaître les Syndrômes Cérébelleux (CSC).

Conflict of Interest Statement The authors declare no conflict of interest.

References

  1. 1.
    Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, Saudou F, Weber C, David G, Tora L et al (1995) Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature 378:403–406CrossRefGoogle Scholar
  2. 2.
    David G, Durr A, Stevanin G, Cancel G, Abbas N, Benomar A, Belal S, Lebre AS, Abada-Bendib M, Grid D, Holmberg M, Yahyaoui M, Hentati F, Chkili T, Agid Y, Brice A (1998) Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Hum Mol Genet 7:165–170CrossRefGoogle Scholar
  3. 3.
    van de Warrenburg BP, Frenken CW, Ausems MG, Kleefstra T, Sinke RJ, Knoers NV, Kremer HP (2001) Striking anticipation in spinocerebellar ataxia type 7: the infantile phenotype. J Neurol 248:911–914CrossRefGoogle Scholar
  4. 4.
    Michalik A, Martin JJ, Van Broeckhoven C (2004) Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy. Eur J Hum Genet 12:2–15CrossRefGoogle Scholar
  5. 5.
    Monckton DG, Cayuela ML, Gould FK, Brock GJ, Silva R, Ashizawa T (1999) Very large (CAG) n DNA repeat expansions in the sperm of two spinocerebellar ataxia type 7 males. Hum Mol Genet 8:2473–2478CrossRefGoogle Scholar
  6. 6.
    Giunti P, Stevanin G, Worth PF, David G, Brice A, Wood NW (1999) Molecular and clinical study of 18 families with ADCA type II: evidence for genetic heterogeneity and de novo mutation. Am J Hum Genet 64:1594–1603CrossRefGoogle Scholar
  7. 7.
    Johansson J, Forsgren L, Sandgren O, Brice A, Holmgren G, Holmberg M (1998) Expanded CAG repeats in Swedish spinocerebellar ataxia type 7 (SCA7) patients: effect of CAG repeat length on the clinical manifestation. Hum Mol Genet 7:171–176CrossRefGoogle Scholar
  8. 8.
    Ansorge O, Giunti P, Michalik A, Van Broeckhoven C, Harding B, Wood N, Scaravilli F (2004) Ataxin-7 aggregation and ubiquitination in infantile SCA7 with 180 CAG repeats. Ann Neurol 56:448–452CrossRefGoogle Scholar
  9. 9.
    Benton CS, de Silva R, Rutledge SL, Bohlega S, Ashizawa T, Zoghbi HY (1998) Molecular and clinical studies in SCA-7 define a broad clinical spectrum and the infantile phenotype. Neurology 51:1081–1086CrossRefGoogle Scholar
  10. 10.
    Enevoldson TP, Sanders MD, Harding AE (1994) Autosomal dominant cerebellar ataxia with pigmentary macular dystrophy. A clinical and genetic study of eight families. Brain J Neurol 117(3):445–460CrossRefGoogle Scholar
  11. 11.
    Trang H, Stanley SY, Thorner P, Faghfoury H, Schulze A, Hawkins C, Pearson CE, Yoon G (2014) Massive CAG repeat expansion and somatic instability in maternally transmitted infantile spinocerebellar ataxia type 7. JAMA NeurolGoogle Scholar
  12. 12.
    Whitney A, Lim M, Kanabar D, Lin JP (2007) Massive SCA7 expansion detected in a 7-month-old male with hypotonia, cardiomegaly, and renal compromise. Dev Med Child Neurol 49:140–143CrossRefGoogle Scholar
  13. 13.
    Alcauter S, Barrios FA, Diaz R, Fernandez-Ruiz J (2011) Gray and white matter alterations in spinocerebellar ataxia type 7: an in vivo DTI and VBM study. Neuroimage 55:1–7CrossRefGoogle Scholar
  14. 14.
    Bang OY, Lee PH, Kim SY, Kim HJ, Huh K (2004) Pontine atrophy precedes cerebellar degeneration in spinocerebellar ataxia 7: MRI-based volumetric analysis. J Neurol Neurosurg Psychiatry 75:1452–1456CrossRefGoogle Scholar
  15. 15.
    Horton LC, Frosch MP, Vangel MG, Weigel-DiFranco C, Berson EL, Schmahmann JD (2013) Spinocerebellar ataxia type 7: clinical course, phenotype-genotype correlations, and neuropathology. Cerebellum 12:176–193CrossRefGoogle Scholar
  16. 16.
    Martin J, Van Regemorter N, Del-Favero J, Lofgren A, Van Broeckhoven C (1999) Spinocerebellar ataxia type 7 (SCA7)—correlations between phenotype and genotype in one large Belgian family. J Neurol Sci 168:37–46CrossRefGoogle Scholar
  17. 17.
    Rub U, Brunt ER, Seidel K, Gierga K, Mooy CM, Kettner M, Van Broeckhoven C, Bechmann I, La Spada AR, Schols L, den Dunnen W, de Vos RA, Deller T (2008) Spinocerebellar ataxia type 7 (SCA7): widespread brain damage in an adult-onset patient with progressive visual impairments in comparison with an adult-onset patient without visual impairments. Neuropathol Appl Neurobiol 34:155–168CrossRefGoogle Scholar
  18. 18.
    Rub U, Brunt ER, Gierga K, Seidel K, Schultz C, Schols L, Auburger G, Heinsen H, Ippel PF, Glimmerveen WF, Wittebol-Post D, Arai K, Deller T, de Vos RA (2005) Spinocerebellar ataxia type 7 (SCA7): first report of a systematic neuropathological study of the brain of a patient with a very short expanded CAG-repeat. Brain Pathol 15:287–295CrossRefGoogle Scholar
  19. 19.
    Benomar A, Leguern E, Durr A, Ouhabi H, Stevanin G, Yahyaoui M, Chkili T, Agid Y, Brice A (1994) Autosomal-dominant cerebellar-ataxia with retinal degeneration (ADCA type-II) is genetically different from ADCA type-I. Ann Neurol 35:439–444CrossRefGoogle Scholar
  20. 20.
    Gouw LG, Digre KB, Harris CP, Haines JH, Ptacek LJ (1994) Autosomal-dominant cerebellar-ataxia with retinal degeneration—clinical, neuropathologic, and genetic-analysis of a large kindred. Neurology 44:1441–1447CrossRefGoogle Scholar
  21. 21.
    Martin JJ, Van Regemorter N, Krols L, Brucher JM, de Barsy T, Szliwowski H, Evrard P, Ceuterick C, Tassignon MJ, Smet-Dieleman H et al (1994) On an autosomal dominant form of retinal-cerebellar degeneration: an autopsy study of five patients in one family. Acta Neuropathol (Berl) 88:277–286CrossRefGoogle Scholar
  22. 22.
    Aleman TS, Cideciyan AV, Volpe NJ, Stevanin G, Brice A, Jacobson SG (2002) Spinocerebellar ataxia type 7 (SCA7) shows a cone-rod dystrophy phenotype. Exp Eye Res 74:737–745CrossRefGoogle Scholar
  23. 23.
    Einum DD, Clark AM, Townsend JJ, Ptacek LJ, Fu YH (2003) A novel central nervous system-enriched spinocerebellar ataxia type 7 gene product. Arch Neurol 60:97–103CrossRefGoogle Scholar
  24. 24.
    Helmlinger D, Hardy S, Sasorith S, Klein F, Robert F, Weber C, Miguet L, Potier N, Van-Dorsselaer A, Wurtz JM, Mandel JL, Tora L, Devys D (2004) Ataxin-7 is a subunit of GCN5 histone acetyltransferase-containing complexes. Hum Mol Genet 13:1257–1265CrossRefGoogle Scholar
  25. 25.
    Duncan CE, An MC, Papanikolaou T, Rugani C, Vitelli C, Ellerby LM (2013) Histone deacetylase-3 interacts with ataxin-7 and is altered in a spinocerebellar ataxia type 7 mouse model. Mol Neurodegener 8:42CrossRefGoogle Scholar
  26. 26.
    Janer A, Werner A, Takahashi-Fujigasaki J, Daret A, Fujigasaki H, Takada K, Duyckaerts C, Brice A, Dejean A, Sittler A (2010) SUMOylation attenuates the aggregation propensity and cellular toxicity of the polyglutamine expanded ataxin-7. Hum Mol Genet 19:181–195CrossRefGoogle Scholar
  27. 27.
    Cancel G, Duyckaerts C, Holmberg M, Zander C, Yvert G, Lebre AS, Ruberg M, Faucheux B, Agid Y, Hirsch E, Brice A (2000) Distribution of ataxin-7 in normal human brain and retina. Brain J Neurol 123(12):2519–2530CrossRefGoogle Scholar
  28. 28.
    Einum DD, Townsend JJ, Ptacek LJ, Fu YH (2001) Ataxin-7 expression analysis in controls and spinocerebellar ataxia type 7 patients. Neurogenetics 3:83–90CrossRefGoogle Scholar
  29. 29.
    Einum DD, Gouw L, MAtilla A, Townsend J, Fu YH, Ptacek LJ (1999) Expression analysis of ataxin-7 reveals restricted localization of an alternate isoform. Am J Hum Genet 65:A104–A104Google Scholar
  30. 30.
    Jonasson J, Strom AL, Hart P, Brannstrom T, Forsgren L, Holmberg M (2002) Expression of ataxin-7 in CNS and non-CNS tissue of normal and SCA7 individuals. Acta Neuropathol 104:29–37CrossRefGoogle Scholar
  31. 31.
    Lindenberg KS, Yvert G, Muller K, Landwehrmeyer GB (2000) Expression analysis of ataxin-7 mRNA and protein in human brain: evidence for a widespread distribution and focal protein accumulation. Brain Pathol 10:385–394CrossRefGoogle Scholar
  32. 32.
    Mauger C, Del-Favero J, Ceuterick C, Lubke U, van Broeckhoven C, Martin J (1999) Identification and localization of ataxin-7 in brain and retina of a patient with cerebellar ataxia type II using anti-peptide antibody. Brain Res Mol Brain Res 74:35–43CrossRefGoogle Scholar
  33. 33.
    Strom AL, Jonasson J, Hart P, Brannstrom T, Forsgren L, Holmberg M (2002) Cloning and expression analysis of the murine homolog of the spinocerebellar ataxia type 7 (SCA7) gene. Gene 285:91–99CrossRefGoogle Scholar
  34. 34.
    Palhan VB, Chen S, Peng GH, Tjernberg A, Gamper AM, Fan Y, Chait BT, La Spada AR, Roeder RG (2005) Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. Proc Natl Acad Sci USA 102:8472–8477CrossRefGoogle Scholar
  35. 35.
    Sanders SL, Jennings J, Canutescu A, Link AJ, Weil PA (2002) Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol Cell Biol 22:4723–4738CrossRefGoogle Scholar
  36. 36.
    Scheel H, Tomiuk S, Hofmann K (2003) Elucidation of ataxin-3 and ataxin-7 function by integrative bioinformatics. Hum Mol Genet 12:2845–2852CrossRefGoogle Scholar
  37. 37.
    Wyce A, Henry KW, Berger SL (2004) H2B ubiquitylation and de-ubiquitylation in gene activation. Novartis Found Symp 259:63–73; discussion 73–67, 163–169Google Scholar
  38. 38.
    Bonnet J, Wang CY, Baptista T, Vincent SD, Hsiao WC, Stierle M, Kao CF, Tora L, Devys D (2014) The SAGA coactivator complex acts on the whole transcribed genome and is required for RNA polymerase II transcription. Genes Dev 28:1999–2012CrossRefGoogle Scholar
  39. 39.
    Nakamura Y, Tagawa K, Oka T, Sasabe T, Ito H, Shiwaku H, La Spada AR, Okazawa H (2012) Ataxin-7 associates with microtubules and stabilizes the cytoskeletal network. Hum Mol Genet 21:1099–1110CrossRefGoogle Scholar
  40. 40.
    Kahle JJ, Gulbahce N, Shaw CA, Lim J, Hill DE, Barabasi AL, Zoghbi HY (2011) Comparison of an expanded ataxia interactome with patient medical records reveals a relationship between macular degeneration and ataxia. Hum Mol Genet 20:510–527CrossRefGoogle Scholar
  41. 41.
    Mohan RD, Dialynas G, Weake VM, Liu J, Martin-Brown S, Florens L, Washburn MP, Workman JL, Abmayr SM (2014) Loss of Drosophila ataxin-7, a SAGA subunit, reduces H2B ubiquitination and leads to neural and retinal degeneration. Genes Dev 28:259–272CrossRefGoogle Scholar
  42. 42.
    Yanicostas C, Barbieri E, Hibi M, Brice A, Stevanin G, Soussi-Yanicostas N (2012) Requirement for zebrafish ataxin-7 in differentiation of photoreceptors and cerebellar neurons. PLoS ONE 7:e50705CrossRefGoogle Scholar
  43. 43.
    Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23:217–247CrossRefGoogle Scholar
  44. 44.
    Yoo SY, Pennesi ME, Weeber EJ, Xu B, Atkinson R, Chen S, Armstrong DL, Wu SM, Sweatt JD, Zoghbi HY (2003) SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant ataxin-7 in neurons and abnormalities in short-term plasticity. Neuron 37:383–401CrossRefGoogle Scholar
  45. 45.
    Yvert G, Lindenberg KS, Devys D, Helmlinger D, Landwehrmeyer GB, Mandel JL (2001) SCA7 mouse models show selective stabilization of mutant ataxin-7 and similar cellular responses in different neuronal cell types. Hum Mol Genet 10:1679–1692CrossRefGoogle Scholar
  46. 46.
    Garden GA, Libby RT, Fu YH, Kinoshita Y, Huang J, Possin DE, Smith AC, Martinez RA, Fine GC, Grote SK, Ware CB, Einum DD, Morrison RS, Ptacek LJ, Sopher BL, La Spada AR (2002) Polyglutamine-expanded ataxin-7 promotes non-cell-autonomous purkinje cell degeneration and displays proteolytic cleavage in ataxic transgenic mice. J Neurosci Official J Soc Neurosci 22:4897–4905CrossRefGoogle Scholar
  47. 47.
    Yvert G, Lindenberg KS, Picaud S, Landwehrmeyer GB, Sahel JA, Mandel JL (2000) Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice. Hum Mol Genet 9:2491–2506CrossRefGoogle Scholar
  48. 48.
    Young JE, Gouw L, Propp S, Sopher BL, Taylor J, Lin A, Hermel E, Logvinova A, Chen SF, Chen S, Bredesen DE, Truant R, Ptacek LJ, La Spada AR, Ellerby LM (2007) Proteolytic cleavage of ataxin-7 by caspase-7 modulates cellular toxicity and transcriptional dysregulation. J Biol Chem 282:30150–30160CrossRefGoogle Scholar
  49. 49.
    Guyenet SJ, Mookerjee SS, Lin A, Custer SK, Chen SF, Sopher BL, La Spada AR, Ellerby LM (2015) Proteolytic cleavage of ataxin-7 promotes SCA7 retinal degeneration and neurological dysfunction. Hum Mol Genet 24:3908–3917CrossRefGoogle Scholar
  50. 50.
    Mookerjee S, Papanikolaou T, Guyenet SJ, Sampath V, Lin A, Vitelli C, DeGiacomo F, Sopher BL, Chen SF, La Spada AR, Ellerby LM (2009) Posttranslational modification of ataxin-7 at lysine 257 prevents autophagy-mediated turnover of an N-terminal caspase-7 cleavage fragment. J Neurosci Official J Soc Neurosci 29:15134–15144CrossRefGoogle Scholar
  51. 51.
    Takahashi J, Fujigasaki H, Zander C, El Hachimi KH, Stevanin G, Durr A, Lebre AS, Yvert G, Trottier Y, de The H, Hauw JJ, Duyckaerts C, Brice A (2002) Two populations of neuronal intranuclear inclusions in SCA7 differ in size and promyelocytic leukaemia protein content. Brain J Neurol 125:1534–1543CrossRefGoogle Scholar
  52. 52.
    Takahashi J, Fujigasaki H, Iwabuchi K, Bruni AC, Uchihara T, El Hachimi KH, Stevanin G, Durr A, Lebre AS, Trottier Y, de The H, Tanaka J, Hauw JJ, Duyckaerts C, Brice A (2003) PML nuclear bodies and neuronal intranuclear inclusion in polyglutamine diseases. Neurobiol Dis 13:230–237CrossRefGoogle Scholar
  53. 53.
    Janer A, Martin E, Muriel MP, Latouche M, Fujigasaki H, Ruberg M, Brice A, Trottier Y, Sittler A (2006) PML clastosomes prevent nuclear accumulation of mutant ataxin-7 and other polyglutamine proteins. J Cell Biol 174:65–76CrossRefGoogle Scholar
  54. 54.
    Chort A, Alves S, Marinello M, Dufresnois B, Dornbierer JG, Tesson C, Latouche M, Baker DP, Barkats M, El Hachimi KH, Ruberg M, Janer A, Stevanin G, Brice A, Sittler A (2013) Interferon beta induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice. Brain J NeurolGoogle Scholar
  55. 55.
    Abou-Sleymane G, Chalmel F, Helmlinger D, Lardenois A, Thibault C, Weber C, Merienne K, Mandel JL, Poch O, Devys D, Trottier Y (2006) Polyglutamine expansion causes neurodegeneration by altering the neuronal differentiation program. Hum Mol Genet 15:691–703CrossRefGoogle Scholar
  56. 56.
    Chou AH, Chen CY, Chen SY, Chen WJ, Chen YL, Weng YS, Wang HL (2010) Polyglutamine-expanded ataxin-7 causes cerebellar dysfunction by inducing transcriptional dysregulation. Neurochem Int 56:329–339CrossRefGoogle Scholar
  57. 57.
    Helmlinger D, Hardy S, Abou-Sleymane G, Eberlin A, Bowman AB, Gansmuller A, Picaud S, Zoghbi HY, Trottier Y, Tora L, Devys D (2006) Polyglutamine-expanded ataxin-7 mediates aberrant recruitment of TFTC-type complexes and chromatin decondensation leading to photoreceptor dysfunction in Spinocerebellar ataxia type 7. PLoS Biol 4:e67CrossRefGoogle Scholar
  58. 58.
    La Spada AR, Fu YH, Sopher BL, Libby RT, Wang X, Li LY, Einum DD, Huang J, Possin DE, Smith AC, Martinez RA, Koszdin KL, Treuting PM, Ware CB, Hurley JB, Ptacek LJ, Chen S (2001) Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7. Neuron 31:913–927CrossRefGoogle Scholar
  59. 59.
    McMahon SJ, Pray-Grant MG, Schieltz D, Yates JR 3rd, Grant PA (2005) Polyglutamine-expanded spinocerebellar ataxia-7 protein disrupts normal SAGA and SLIK histone acetyltransferase activity. Proc Natl Acad Sci USA 102:8478–8482CrossRefGoogle Scholar
  60. 60.
    Kizilyaprak C, Spehner D, Devys D, Schultz P (2011) The linker histone H1C contributes to the SCA7 nuclear phenotype. Nucleus 2:444–454CrossRefGoogle Scholar
  61. 61.
    Chen YC, Gatchel JR, Lewis RW, Mao CA, Grant PA, Zoghbi HY, Dent SY (2012) Gcn5 loss-of-function accelerates cerebellar and retinal degeneration in a SCA7 mouse model. Hum Mol Genet 21:394–405CrossRefGoogle Scholar
  62. 62.
    McCullough SD, Xu X, Dent SY, Bekiranov S, Roeder RG, Grant PA (2012) Reelin is a target of polyglutamine expanded ataxin-7 in human spinocerebellar ataxia type 7 (SCA7) astrocytes. Proc Natl Acad Sci USA 109:21319–21324CrossRefGoogle Scholar
  63. 63.
    Yang H, Liu S, He WT, Zhao J, Jiang LL, Hu HY (2015) Aggregation of polyglutamine-expanded ataxin 7 protein specifically sequesters ubiquitin-specific protease 22 and deteriorates its deubiquitinating function in the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex. J Biol Chem 290:21996–22004CrossRefGoogle Scholar
  64. 64.
    Lan X, Koutelou E, Schibler AC, Chen YC, Grant PA, Dent SY (2015) Poly(Q) expansions in ATXN7 affect solubility but not activity of the SAGA deubiquitinating module. Mol Cell Biol 35:1777–1787CrossRefGoogle Scholar
  65. 65.
    Tan JY, Vance KW, Varela MA, Sirey T, Watson LM, Curtis HJ, Marinello M, Alves S, Steinkraus BR, Cooper S, Nesterova T, Brockdorff N, Fulga TA, Brice A, Sittler A, Oliver PL, Wood MJ, Ponting CP, Marques AC (2014) Cross-talking noncoding RNAs contribute to cell-specific neurodegeneration in SCA7. Nat Struct Mol Biol 21:955–961CrossRefGoogle Scholar
  66. 66.
    Strom AL, Forsgren L, Holmberg M (2005) A role for both wild-type and expanded ataxin-7 in transcriptional regulation. Neurobiol Dis 20:646–655CrossRefGoogle Scholar
  67. 67.
    Ajayi A, Yu X, Lindberg S, Langel U, Strom AL (2012) Expanded ataxin-7 cause toxicity by inducing ROS production from NADPH oxidase complexes in a stable inducible spinocerebellar ataxia type 7 (SCA7) model. BMC Neurosci 13:86CrossRefGoogle Scholar
  68. 68.
    Yefimova MG, Messaddeq N, Karam A, Jacquard C, Weber C, Jonet L, Wolfrum U, Jeanny JC, Trottier Y (2010) Polyglutamine toxicity induces rod photoreceptor division, morphological transformation or death in Spinocerebellar ataxia 7 mouse retina. Neurobiol Dis 40:311–324CrossRefGoogle Scholar
  69. 69.
    Forsgren L, Libelius R, Holmberg M, von Dobeln U, Wibom R, Heijbel J, Sandgren O, Holmgren G (1996) Muscle morphology and mitochondrial investigations of a family with autosomal dominant cerebellar ataxia and retinal degeneration mapped to chromosome 3p12–p21.1. J Neurol Sci 144:91–98CrossRefGoogle Scholar
  70. 70.
    Chen S, Peng GH, Wang X, Smith AC, Grote SK, Sopher BL, La Spada AR (2004) Interference of Crx-dependent transcription by ataxin-7 involves interaction between the glutamine regions and requires the ataxin-7 carboxy-terminal region for nuclear localization. Hum Mol Genet 13:53–67CrossRefGoogle Scholar
  71. 71.
    Marc RE, Jones BW (2003) Retinal remodeling in inherited photoreceptor degenerations. Mol Neurobiol 28:139–147CrossRefGoogle Scholar
  72. 72.
    Merienne K, Helmlinger D, Perkin GR, Devys D, Trottier Y (2003) Polyglutamine expansion induces a protein-damaging stress connecting heat shock protein 70 to the JNK pathway. J Biol Chem 278:16957–16967CrossRefGoogle Scholar
  73. 73.
    Merienne K, Friedman J, Akimoto M, Abou-Sleymane G, Weber C, Swaroop A, Trottier Y (2007) Preventing polyglutamine-induced activation of c-Jun delays neuronal dysfunction in a mouse model of SCA7 retinopathy. Neurobiology of disease 25:571–581CrossRefGoogle Scholar
  74. 74.
    Custer SK, Garden GA, Gill N, Rueb U, Libby RT, Schultz C, Guyenet SJ, Deller T, Westrum LE, Sopher BL, La Spada AR (2006) Bergmann glia expression of polyglutamine-expanded ataxin-7 produces neurodegeneration by impairing glutamate transport. Nat Neurosci 9:1302–1311CrossRefGoogle Scholar
  75. 75.
    Noma S, Ohya-Shimada W, Kanai M, Ueda K, Nakamura T, Funakoshi H (2012) Overexpression of HGF attenuates the degeneration of Purkinje cells and Bergmann glia in a knockin mouse model of spinocerebellar ataxia type 7. Neurosci Res 73:115–121CrossRefGoogle Scholar
  76. 76.
    Furrer SA, Mohanachandran MS, Waldherr SM, Chang C, Damian VA, Sopher BL, Garden GA, La Spada AR (2011) Spinocerebellar ataxia type 7 cerebellar disease requires the coordinated action of mutant ataxin-7 in neurons and glia, and displays non-cell-autonomous Bergmann glia degeneration. J Neurosci Official J Soc Neurosci 31:16269–16278CrossRefGoogle Scholar
  77. 77.
    Fern RF, Matute C, Stys PK (2014) White matter injury: ischemic and nonischemic. Glia 62:1780–1789CrossRefGoogle Scholar
  78. 78.
    Lee SG, Su ZZ, Emdad L, Gupta P, Sarkar D, Borjabad A, Volsky DJ, Fisher PB (2008) Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J Biol Chem 283:13116–13123CrossRefGoogle Scholar
  79. 79.
    Maltecca F, Baseggio E, Consolato F, Mazza D, Podini P, Young SM Jr, Drago I, Bahr BA, Puliti A, Codazzi F, Quattrini A, Casari G (2015) Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model. J Clin Invest 125:263–274CrossRefGoogle Scholar
  80. 80.
    Chew LJ, DeBoy CA (2015) Pharmacological approaches to intervention in hypomyelinating and demyelinating white matter pathology. NeuropharmacologyGoogle Scholar
  81. 81.
    Murakami Y, Notomi S, Hisatomi T, Nakazawa T, Ishibashi T, Miller JW, Vavvas DG (2013) Photoreceptor cell death and rescue in retinal detachment and degenerations. Prog Retin Eye Res 37:114–140CrossRefGoogle Scholar
  82. 82.
    Ieraci A, Forni PE, Ponzetto C (2002) Viable hypomorphic signaling mutant of the Met receptor reveals a role for hepatocyte growth factor in postnatal cerebellar development. Proc Natl Acad Sci USA 99:15200–15205CrossRefGoogle Scholar
  83. 83.
    Sun W, Funakoshi H, Nakamura T (2002) Overexpression of HGF retards disease progression and prolongs life span in a transgenic mouse model of ALS. J Neurosci Official J Soc Neurosci 22:6537–6548Google Scholar
  84. 84.
    Furrer SA, Waldherr SM, Mohanachandran MS, Baughn TD, Nguyen KT, Sopher BL, Damian VA, Garden GA, La Spada AR (2013) Reduction of mutant ataxin-7 expression restores motor function and prevents cerebellar synaptic reorganization in a conditional mouse model of SCA7. Hum Mol Genet 22:890–903CrossRefGoogle Scholar
  85. 85.
    Ramachandran PS, Boudreau RL, Schaefer KA, La Spada AR, Davidson BL (2014) Nonallele specific silencing of ataxin-7 improves disease phenotypes in a mouse model of SCA7. Mol Ther 22:1635–1642CrossRefGoogle Scholar
  86. 86.
    Greenberg J, Solomon GA, Vorster AA, Heckmann J, Bryer A (2006) Origin of the SCA7 gene mutation in South Africa: implications for molecular diagnostics. Clin Genet 70:415–417CrossRefGoogle Scholar
  87. 87.
    Scholefield J, Watson L, Smith D, Greenberg J, Wood MJ (2014) Allele-specific silencing of mutant Ataxin-7 in SCA7 patient-derived fibroblasts. Eur J Hum Genet 22:1369–1375CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, (UMR7104)Institut National de la Santé et de la Recherche Médicale (U964)IllkirchFrance
  2. 2.Université de StrasbourgStrasbourgFrance

Personalised recommendations