Stem Cell-Based Therapies for Polyglutamine Diseases

  • Liliana S. Mendonça
  • Isabel Onofre
  • Catarina Oliveira Miranda
  • Rita Perfeito
  • Clévio Nóbrega
  • Luís Pereira de Almeida
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1049)


Polyglutamine (polyQ) diseases are a family of neurodegenerative disorders with very heterogeneous clinical presentations, although with common features such as progressive neuronal death. Thus, at the time of diagnosis patients might present an extensive and irreversible neuronal death demanding cell replacement or support provided by cell-based therapies. For this purpose stem cells, which include diverse populations ranging from embryonic stem cells (ESCs), to fetal stem cells, mesenchymal stromal cells (MSCs) or induced pluripotent stem cells (iPSCs) have remarkable potential to promote extensive brain regeneration and recovery in neurodegenerative disorders. This regenerative potential has been demonstrated in exciting pre and clinical assays. However, despite these promising results, several drawbacks are hampering their successful clinical implementation. Problems related to ethical issues, quality control of the cells used and the lack of reliable models for the efficacy assessment of human stem cells. In this chapter the main advantages and disadvantages of the available sources of stem cells as well as their efficacy and potential to improve disease outcomes are discussed.


NSCs ESCs MSCs iPSCs and polyQ diseases 


  1. 1.
    Takahashi T, Katada S, Onodera O (2010) Polyglutamine diseases: where does toxicity come from? what is toxicity? where are we going? J Mol Cell Biol 2:180–191PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Teive HA (2009) Spinocerebellar ataxias. Arq Neuropsiquiatr 67:1133–1142PubMedCrossRefGoogle Scholar
  3. 3.
    Ostenfeld T, Svendsen CN (2003) Recent advances in stem cell neurobiology. Adv Tech Stand Neurosurg 28:3–89PubMedCrossRefGoogle Scholar
  4. 4.
    Dulak J, Szade K, Szade A, Nowak W, Jozkowicz A (2015) Adult stem cells: hopes and hypes of regenerative medicine. Acta Biochim Pol 62:329–337PubMedCrossRefGoogle Scholar
  5. 5.
    Kim TG, Yao R, Monnell T, Cho JH, Vasudevan A, Koh A, Peeyush KT, Moon M, Datta D, Bolshakov VY et al (2014) Efficient specification of interneurons from human pluripotent stem cells by dorsoventral and rostrocaudal modulation. Stem Cells 32:1789–1804PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMedGoogle Scholar
  7. 7.
    Anderson DJ (1989) The neural crest cell lineage problem: neuropoiesis? Neuron 3:1–12PubMedCrossRefGoogle Scholar
  8. 8.
    Cattaneo E, McKay R (1990) Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 347:762–765PubMedCrossRefGoogle Scholar
  9. 9.
    Davis AA, Temple S (1994) A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 372:263–266PubMedCrossRefGoogle Scholar
  10. 10.
    Kilpatrick TJ, Bartlett PF (1993) Cloning and growth of multipotential neural precursors: requirements for proliferation and differentiation. Neuron 10:255–265PubMedCrossRefGoogle Scholar
  11. 11.
    Temple S (1989) Division and differentiation of isolated CNS blast cells in microculture. Nature 340:471–473PubMedCrossRefGoogle Scholar
  12. 12.
    Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317PubMedCrossRefGoogle Scholar
  13. 13.
    Gage FH, Temple S (2013) Neural stem cells: generating and regenerating the brain. Neuron 80:588–601PubMedCrossRefGoogle Scholar
  14. 14.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedCrossRefGoogle Scholar
  16. 16.
    Sadan O, Shemesh N, Barzilay R, Dadon-Nahum M, Blumenfeld-Katzir T, Assaf Y, Yeshurun M, Djaldetti R, Cohen Y, Melamed E et al (2012) Mesenchymal stem cells induced to secrete neurotrophic factors attenuate quinolinic acid toxicity: a potential therapy for Huntington’s disease. Exp Neurol 234:417–427PubMedCrossRefGoogle Scholar
  17. 17.
    Lindvall O, Kokaia Z (2009) Prospects of stem cell therapy for replacing dopamine neurons in Parkinson’s disease. Trends Pharmacol Sci 30:260–267PubMedCrossRefGoogle Scholar
  18. 18.
    Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 10(Suppl):S42–S50PubMedCrossRefGoogle Scholar
  19. 19.
    O’Donoghue K, Fisk NM (2004) Fetal stem cells. Best Pract Res Clin Obstet Gynaecol 18:853–875PubMedCrossRefGoogle Scholar
  20. 20.
    Sousa-Ferreira L, Aveleira C, Botelho M, Alvaro AR, Pereira de Almeida L, Cavadas C (2014) Fluoxetine induces proliferation and inhibits differentiation of hypothalamic neuroprogenitor cells in vitro. PLoS ONE 9:e88917PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Mendonca LS, Nobrega C, Hirai H, Kaspar BK, Pereira de Almeida L (2015) Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice. Brain J Neurol 138:320–335CrossRefGoogle Scholar
  22. 22.
    Chintawar S, Hourez R, Ravella A, Gall D, Orduz D, Rai M, Bishop DP, Geuna S, Schiffmann SN, Pandolfo M (2009) Grafting neural precursor cells promotes functional recovery in an SCA1 mouse model. J Neurosci Official J Soc Neurosci 29:13126–13135CrossRefGoogle Scholar
  23. 23.
    Benraiss A, Goldman SA (2011) Cellular therapy and induced neuronal replacement for Huntington’s disease. Neurother J Am Soc Exp Neurother 8:577–590CrossRefGoogle Scholar
  24. 24.
    Golas MM, Sander B (2016) Use of human stem cells in Huntington disease modeling and translational research. Exp Neurol 278:76–90PubMedCrossRefGoogle Scholar
  25. 25.
    Borlongan CV, Koutouzis TK, Poulos SG, Saporta S, Sanberg PR (1998) Bilateral fetal striatal grafts in the 3-nitropropionic acid-induced hypoactive model of Huntington’s disease. Cell Transplant 7:131–135PubMedCrossRefGoogle Scholar
  26. 26.
    Hurelbrink CB, Armstrong RJ, Dunnett SB, Rosser AE, Barker RA (2002) Neural cells from primary human striatal xenografts migrate extensively in the adult rat CNS. Eur J Neurosci 15:1255–1266PubMedCrossRefGoogle Scholar
  27. 27.
    Palfi S, Conde F, Riche D, Brouillet E, Dautry C, Mittoux V, Chibois A, Peschanski M, Hantraye P (1998) Fetal striatal allografts reverse cognitive deficits in a primate model of Huntington disease. Nat Med 4:963–966PubMedCrossRefGoogle Scholar
  28. 28.
    Wictorin K, Ouimet CC, Bjorklund A (1989) Intrinsic organization and connectivity of intrastriatal striatal transplants in rats as revealed by DARPP-32 immunohistochemistry: specificity of connections with the lesioned host brain. Eur J Neurosci 1:690–701PubMedCrossRefGoogle Scholar
  29. 29.
    Madrazo I, Franco-Bourland RE, Castrejon H, Cuevas C, Ostrosky-Solis F (1995) Fetal striatal homotransplantation for Huntington’s disease: first two case reports. Neurol Res 17:312–315PubMedCrossRefGoogle Scholar
  30. 30.
    Kopyov OV, Jacques S, Lieberman A, Duma CM, Eagle KS (1998) Safety of intrastriatal neurotransplantation for Huntington’s disease patients. Exp Neurol 149:97–108PubMedCrossRefGoogle Scholar
  31. 31.
    Philpott LM, Kopyov OV, Lee AJ, Jacques S, Duma CM, Caine S, Yang M, Eagle KS (1997) Neuropsychological functioning following fetal striatal transplantation in Huntington’s chorea: three case presentations. Cell Transplant 6:203–212PubMedCrossRefGoogle Scholar
  32. 32.
    Keene CD, Chang RC, Leverenz JB, Kopyov O, Perlman S, Hevner RF, Born DE, Bird TD, Montine TJ (2009) A patient with Huntington’s disease and long-surviving fetal neural transplants that developed mass lesions. Acta Neuropathol 117:329–338PubMedCrossRefGoogle Scholar
  33. 33.
    Keene CD, Sonnen JA, Swanson PD, Kopyov O, Leverenz JB, Bird TD, Montine TJ (2007) Neural transplantation in Huntington disease: long-term grafts in two patients. Neurology 68:2093–2098PubMedCrossRefGoogle Scholar
  34. 34.
    Quinn N, Brown R, Craufurd D, Goldman S, Hodges J, Kieburtz K, Lindvall O, MacMillan J, Roos R (1996) Core Assessment Program for Intracerebral Transplantation in Huntington’s Disease (CAPIT-HD). Movement disorders: official journal of the Movement Disorder Society 11:143–150CrossRefGoogle Scholar
  35. 35.
    Bachoud-Levi AC, Remy P, Nguyen JP, Brugieres P, Lefaucheur JP, Bourdet C, Baudic S, Gaura V, Maison P, Haddad B et al (2000) Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 356:1975–1979PubMedCrossRefGoogle Scholar
  36. 36.
    Gaura V, Bachoud-Levi AC, Ribeiro MJ, Nguyen JP, Frouin V, Baudic S, Brugieres P, Mangin JF, Boisse MF, Palfi S et al (2004) Striatal neural grafting improves cortical metabolism in Huntington’s disease patients. Brain J Neurol 127:65–72CrossRefGoogle Scholar
  37. 37.
    Bachoud-Levi AC, Gaura V, Brugieres P, Lefaucheur JP, Boisse MF, Maison P, Baudic S, Ribeiro MJ, Bourdet C, Remy P et al (2006) Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol 5:303–309PubMedCrossRefGoogle Scholar
  38. 38.
    Hauser RA, Furtado S, Cimino CR, Delgado H, Eichler S, Schwartz S, Scott D, Nauert GM, Soety E, Sossi V et al (2002) Bilateral human fetal striatal transplantation in Huntington’s disease. Neurology 58:687–695PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Freeman TB, Cicchetti F, Hauser RA, Deacon TW, Li XJ, Hersch SM, Nauert GM, Sanberg PR, Kordower JH, Saporta S et al (2000) Transplanted fetal striatum in Huntington’s disease: phenotypic development and lack of pathology. Proc Natl Acad Sci USA 97:13877–13882PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Furtado S, Sossi V, Hauser RA, Samii A, Schulzer M, Murphy CB, Freeman TB, Stoessl AJ (2005) Positron emission tomography after fetal transplantation in Huntington’s disease. Ann Neurol 58:331–337PubMedCrossRefGoogle Scholar
  41. 41.
    Cicchetti F, Saporta S, Hauser RA, Parent M, Saint-Pierre M, Sanberg PR, Li XJ, Parker JR, Chu Y, Mufson EJ et al (2009) Neural transplants in patients with Huntington’s disease undergo disease-like neuronal degeneration. Proc Natl Acad Sci USA 106:12483–12488PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Rosser AE, Barker RA, Harrower T, Watts C, Farrington M, Ho AK, Burnstein RM, Menon DK, Gillard JH, Pickard J et al (2002) Unilateral transplantation of human primary fetal tissue in four patients with Huntington’s disease: NEST-UK safety report ISRCTN no 36485475. J Neurol Neurosurg Psychiatry 73:678–685PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Barker RA, Mason SL, Harrower TP, Swain RA, Ho AK, Sahakian BJ, Mathur R, Elneil S, Thornton S, Hurrelbrink C et al (2013) The long-term safety and efficacy of bilateral transplantation of human fetal striatal tissue in patients with mild to moderate Huntington’s disease. J Neurol Neurosurg Psychiatry 84:657–665PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Reuter I, Tai YF, Pavese N, Chaudhuri KR, Mason S, Polkey CE, Clough C, Brooks DJ, Barker RA, Piccini P (2008) Long-term clinical and positron emission tomography outcome of fetal striatal transplantation in Huntington’s disease. J Neurol Neurosurg Psychiatry 79:948–951PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Gallina P, Paganini M, Lombardini L, Mascalchi M, Porfirio B, Gadda D, Marini M, Pinzani P, Salvianti F, Crescioli C et al (2010) Human striatal neuroblasts develop and build a striatal-like structure into the brain of Huntington’s disease patients after transplantation. Exp Neurol 222:30–41PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Boer GJ (1999) Ethical issues in neurografting of human embryonic cells. Theor Med Bioeth 20:461–475PubMedCrossRefGoogle Scholar
  47. 47.
    Freeman TB, Cicchetti F, Bachoud-Levi AC, Dunnett SB (2011) Technical factors that influence neural transplant safety in Huntington’s disease. Exp Neurol 227:1–9PubMedCrossRefGoogle Scholar
  48. 48.
    Bachoud-Levi AC, Perrier AL (2014) Regenerative medicine in Huntington’s disease: current status on fetal grafts and prospects for the use of pluripotent stem cell. Revue Neurologique 170:749–762PubMedCrossRefGoogle Scholar
  49. 49.
    Barberi T, Klivenyi P, Calingasan NY, Lee H, Kawamata H, Loonam K, Perrier AL, Bruses J, Rubio ME, Topf N et al (2003) Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 21:1200–1207PubMedCrossRefGoogle Scholar
  50. 50.
    Fan HC, Ho LI, Chi CS, Chen SJ, Peng GS, Chan TM, Lin SZ, Harn HJ (2014) Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant 23:441–458PubMedCrossRefGoogle Scholar
  51. 51.
    Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59:89–102PubMedCrossRefGoogle Scholar
  52. 52.
    Aubry L, Bugi A, Lefort N, Rousseau F, Peschanski M, Perrier AL (2008) Striatal progenitors derived from human ES cells mature into DARPP32 neurons in vitro and in quinolinic acid-lesioned rats. Proc Natl Acad Sci U S A 105:16707–16712PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Ma L, Hu B, Liu Y, Vermilyea SC, Liu H, Gao L, Sun Y, Zhang X, Zhang SC (2012) Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell 10:455–464PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kaemmerer WF, Low WC (1999) Cerebellar allografts survive and transiently alleviate ataxia in a transgenic model of spinocerebellar ataxia type-1. Exp Neurol 158:301–311PubMedCrossRefGoogle Scholar
  55. 55.
    Delli Carri A, Onorati M, Lelos MJ, Castiglioni V, Faedo A, Menon R, Camnasio S, Vuono R, Spaiardi P, Talpo F et al (2013) Developmentally coordinated extrinsic signals drive human pluripotent stem cell differentiation toward authentic DARPP-32+ medium-sized spiny neurons. Development 140:301–312PubMedCrossRefGoogle Scholar
  56. 56.
    Arber C, Precious SV, Cambray S, Risner-Janiczek JR, Kelly C, Noakes Z, Fjodorova M, Heuer A, Ungless MA, Rodriguez TA et al (2015) Activin A directs striatal projection neuron differentiation of human pluripotent stem cells. Development 142:1375–1386PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Abdipranoto-Cowley A, Park JS, Croucher D, Daniel J, Henshall S, Galbraith S, Mervin K, Vissel B (2009) Activin A is essential for neurogenesis following neurodegeneration. Stem Cells 27:1330–1346PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Sekiguchi M, Hayashi F, Tsuchida K, Inokuchi K (2009) Neuron type-selective effects of activin on development of the hippocampus. Neurosci Lett 452:232–237PubMedCrossRefGoogle Scholar
  59. 59.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedCrossRefGoogle Scholar
  60. 60.
    Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R et al (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–1221PubMedCrossRefGoogle Scholar
  61. 61.
    Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:277–280PubMedCrossRefGoogle Scholar
  62. 62.
    Grskovic M, Javaherian A, Strulovici B, Daley GQ (2011) Induced pluripotent stem cells—opportunities for disease modelling and drug discovery. Nat Rev Drug Discov 10:915–929PubMedGoogle Scholar
  63. 63.
    Merkle FT, Eggan K (2013) Modeling human disease with pluripotent stem cells: from genome association to function. Cell Stem Cell 12:656–668PubMedCrossRefGoogle Scholar
  64. 64.
    Pankevich DE, Altevogt BM, Dunlop J, Gage FH, Hyman SE (2014) Improving and accelerating drug development for nervous system disorders. Neuron 84:546–553PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Grunseich C, Zukosky K, Kats IR, Ghosh L, Harmison GG, Bott LC, Rinaldi C, Chen KL, Chen G, Boehm M et al (2014) Stem cell-derived motor neurons from spinal and bulbar muscular atrophy patients. Neurobiol Dis 70:12–20PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Nihei Y, Ito D, Okada Y, Akamatsu W, Yagi T, Yoshizaki T, Okano H, Suzuki N (2013) Enhanced aggregation of androgen receptor in induced pluripotent stem cell-derived neurons from spinal and bulbar muscular atrophy. J Biol Chem 288:8043–8052PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Koch P, Breuer P, Peitz M, Jungverdorben J, Kesavan J, Poppe D, Doerr J, Ladewig J, Mertens J, Tuting T et al (2011) Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease. Nature 480:543–546PubMedCrossRefGoogle Scholar
  68. 68.
    Consortium, H.D.i (2012) Induced pluripotent stem cells from patients with Huntington’s disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 11:264–278CrossRefGoogle Scholar
  69. 69.
    Liu GH, Ding Z, Izpisua Belmonte JC (2012) iPSC technology to study human aging and aging-related disorders. Curr Opin Cell Biol 24:765–774PubMedCrossRefGoogle Scholar
  70. 70.
    Sandoe J, Eggan K (2013) Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nat Neurosci 16:780–789PubMedCrossRefGoogle Scholar
  71. 71.
    Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13:1045–1060PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Cooper O, Seo H, Andrabi S, Guardia-Laguarta C, Graziotto J, Sundberg M, McLean JR, Carrillo-Reid L, Xie Z, Osborn T et al (2012) Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Transl Med 4, 141ra190PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Jeon I, Lee N, Li JY, Park IH, Park KS, Moon J, Shim SH, Choi C, Chang DJ, Kwon J et al (2012) Neuronal properties, in vivo effects, and pathology of a Huntington’s disease patient-derived induced pluripotent stem cells. Stem Cells 30:2054–2062PubMedCrossRefGoogle Scholar
  74. 74.
    Mitne-Neto M, Machado-Costa M, Marchetto MC, Bengtson MH, Joazeiro CA, Tsuda H, Bellen HJ, Silva HC, Oliveira AS, Lazar M et al (2011) Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Hum Mol Genet 20:3642–3652PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, Kee K, Schule B, Dolmetsch RE, Langston W et al (2011) LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8:267–280PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Camnasio S, Delli Carri A, Lombardo A, Grad I, Mariotti C, Castucci A, Rozell B, Lo Riso P, Castiglioni V, Zuccato C et al (2012) The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington’s disease patients demonstrates mutation related enhanced lysosomal activity. Neurobiol Dis 46:41–51PubMedCrossRefGoogle Scholar
  77. 77.
    Sanchez-Danes A, Richaud-Patin Y, Carballo-Carbajal I, Jimenez-Delgado S, Caig C, Mora S, Di Guglielmo C, Ezquerra M, Patel B, Giralt A et al (2012) Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol Med 4:380–395PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Onofre I (2016) Dissecting the pathogenesis of Machado-Joseph Disease in a new human disease model derived from induced pluripotent stem cells (Doctoral Dissertation). In University of CoimbraGoogle Scholar
  79. 79.
    Carmona V, Cunha-Santos J, Onofre I, Simoes AT, Vijayakumar U, Davidson BL, Pereira de Almeida L (2017) Unravelling endogenous microRNA system dysfunction as a new pathophysiological mechanism in Machado-Joseph disease. Mol Ther J Am Soc Gene Ther 25:1038–1055CrossRefGoogle Scholar
  80. 80.
    Mattson MP, Magnus T (2006) Ageing and neuronal vulnerability. Nat Rev Neurosci 7:278–294PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Mattis VB, Tom C, Akimov S, Saeedian J, Ostergaard ME, Southwell AL, Doty CN, Ornelas L, Sahabian A, Lenaeus L et al (2015) HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity. Hum Mol Genet 24:3257–3271PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hansen SK, Borland H, Hasholt LF, Tumer Z, Nielsen JE, Rasmussen MA, Nielsen TT, Stummann TC, Fog K, Hyttel P (2016) Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.B11. Stem Cell Res 16:589–592PubMedCrossRefGoogle Scholar
  83. 83.
    Fink KD, Crane AT, Leveque X, Dues DJ, Huffman LD, Moore AC, Story DT, Dejonge RE, Antcliff A, Starski PA et al (2014) Intrastriatal transplantation of adenovirus-generated induced pluripotent stem cells for treating neuropathological and functional deficits in a rodent model of Huntington’s disease. Stem Cells Transl Med 3:620–631PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Mu S, Wang J, Zhou G, Peng W, He Z, Zhao Z, Mo C, Qu J, Zhang J (2014) Transplantation of induced pluripotent stem cells improves functional recovery in Huntington’s disease rat model. PLoS ONE 9:e101185PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Lee MO, Moon SH, Jeong HC, Yi JY, Lee TH, Shim SH, Rhee YH, Lee SH, Oh SJ, Lee MY et al (2013) Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc Natl Acad Sci U S A 110:E3281–E3290PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, Nakagawa M, Koyanagi M, Tanabe K, Ohnuki M et al (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27:743–745PubMedCrossRefGoogle Scholar
  87. 87.
    Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, Yow A, Soldner F, Hockemeyer D, Hallett PJ et al (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci U S A 107:15921–15926PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Peng SP, Copray S (2016) Comparison of human primary with human iPS cell-derived dopaminergic neuron grafts in the rat model for Parkinson’s Disease. Stem Cell Rev 12:105–120PubMedCrossRefGoogle Scholar
  89. 89.
    Wang S, Zou C, Fu L, Wang B, An J, Song G, Wu J, Tang X, Li M, Zhang J et al (2015) Autologous iPSC-derived dopamine neuron transplantation in a nonhuman primate Parkinson’s disease model. Cell Discov 1:15012PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11:268–277PubMedCrossRefGoogle Scholar
  91. 91.
    Ben-David U, Benvenisty N, Mayshar Y (2010) Genetic instability in human induced pluripotent stem cells: classification of causes and possible safeguards. Cell Cycle 9:4603–4604PubMedCrossRefGoogle Scholar
  92. 92.
    Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403PubMedGoogle Scholar
  93. 93.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  94. 94.
    Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301PubMedCrossRefGoogle Scholar
  95. 95.
    Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A (2005) Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy 7:393–395PubMedCrossRefGoogle Scholar
  96. 96.
    Lee M, Jeong SY, Ha J, Kim M, Jin HJ, Kwon SJ, Chang JW, Choi SJ, Oh W, Yang YS et al (2014) Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo. Biochem Biophys Res Commun 446:983–989PubMedCrossRefGoogle Scholar
  97. 97.
    Choumerianou DM, Dimitriou H, Perdikogianni C, Martimianaki G, Riminucci M, Kalmanti M (2008) Study of oncogenic transformation in ex vivo expanded mesenchymal cells, from paediatric bone marrow. Cell Prolif 41:909–922PubMedCrossRefGoogle Scholar
  98. 98.
    Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084PubMedCrossRefGoogle Scholar
  99. 99.
    Zhang Y, Chopp M, Liu XS et al (2016) Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons. Mol Neurobiol 54(4):2659–2673PubMedCrossRefGoogle Scholar
  100. 100.
    Lee ST, Chu K, Jung KH, Im WS, Park JE, Lim HC, Won CH, Shin SH, Lee SK, Kim M et al (2009) Slowed progression in models of Huntington disease by adipose stem cell transplantation. Ann Neurol 66:671–681PubMedCrossRefGoogle Scholar
  101. 101.
    Im W, Lee ST, Park JE, Oh HJ, Shim J, Lim J, Chu K, Kim M (2010) Transplantation of patient-derived adipose stem cells in YAC128 Huntington’s disease transgenic mice. PLoS currents 2Google Scholar
  102. 102.
    Hosseini M, Moghadas M, Edalatmanesh MA, Hashemzadeh MR (2015) Xenotransplantation of human adipose derived mesenchymal stem cells in a rodent model of Huntington’s disease: motor and non-motor outcomes. Neurol Res 37:309–319PubMedCrossRefGoogle Scholar
  103. 103.
    Edalatmanesh MA, Bahrami AR, Hosseini E, Hosseini M, Khatamsaz S (2011) Bone marrow derived mesenchymal stem cell transplantation in cerebellar degeneration: a behavioral study. Behav Brain Res 225:63–70PubMedCrossRefGoogle Scholar
  104. 104.
    Snyder BR, Chiu AM, Prockop DJ, Chan AW (2010) Human multipotent stromal cells (MSCs) increase neurogenesis and decrease atrophy of the striatum in a transgenic mouse model for Huntington’s disease. PLoS ONE 5:e9347PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Sadan O, Bahat-Stromza M, Barhum Y, Levy YS, Pisnevsky A, Peretz H, Ilan AB, Bulvik S, Shemesh N, Krepel D et al (2009) Protective effects of neurotrophic factor-secreting cells in a 6-OHDA rat model of Parkinson disease. Stem Cells Dev 18:1179–1190PubMedCrossRefGoogle Scholar
  106. 106.
    Sadan O, Shemesh N, Barzilay R, Bahat-Stromza M, Melamed E, Cohen Y, Offen D (2008) Migration of neurotrophic factors-secreting mesenchymal stem cells toward a quinolinic acid lesion as viewed by magnetic resonance imaging. Stem Cells 26:2542–2551PubMedCrossRefGoogle Scholar
  107. 107.
    Dey ND, Bombard MC, Roland BP, Davidson S, Lu M, Rossignol J, Sandstrom MI, Skeel RL, Lescaudron L, Dunbar GL (2010) Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behav Brain Res 214:193–200PubMedCrossRefGoogle Scholar
  108. 108.
    Lin YT, Chern Y, Shen CK, Wen HL, Chang YC, Li H, Cheng TH, Hsieh-Li HM (2011) Human mesenchymal stem cells prolong survival and ameliorate motor deficit through trophic support in Huntington’s disease mouse models. PLoS ONE 6:e22924PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Rossignol J, Boyer C, Leveque X, Fink KD, Thinard R, Blanchard F, Dunbar GL, Lescaudron L (2011) Mesenchymal stem cell transplantation and DMEM administration in a 3NP rat model of Huntington’s disease: morphological and behavioral outcomes. Behav Brain Res 217:369–378PubMedCrossRefGoogle Scholar
  110. 110.
    Rossignol J, Fink KD, Crane AT, Davis KK, Bombard MC, Clerc S, Bavar AM, Lowrance SA, Song C, Witte S et al (2015) Reductions in behavioral deficits and neuropathology in the R6/2 mouse model of Huntington’s disease following transplantation of bone-marrow-derived mesenchymal stem cells is dependent on passage number. Stem Cell Res Ther 6:9PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Chang YK, Chen MH, Chiang YH, Chen YF, Ma WH, Tseng CY, Soong BW, Ho JH, Lee OK (2011) Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells. J Biomed Sci 18Google Scholar
  112. 112.
    Matsuura S, Shuvaev AN, Iizuka A, Nakamura K, Hirai H (2014) Mesenchymal stem cells ameliorate cerebellar pathology in a mouse model of spinocerebellar ataxia type 1. Cerebellum 13:323–330PubMedCrossRefGoogle Scholar
  113. 113.
    Fink KD, Rossignol J, Crane AT, Davis KK, Bombard MC, Bavar AM, Clerc S, Lowrance SA, Song C, Lescaudron L et al (2013) Transplantation of umbilical cord-derived mesenchymal stem cells into the striata of R6/2 mice: behavioral and neuropathological analysis. Stem Cell Res Ther 4:130PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Dongmei H, Jing L, Mei X, Ling Z, Hongmin Y, Zhidong W, Li D, Zikuan G, Hengxiang W (2011) Clinical analysis of the treatment of spinocerebellar ataxia and multiple system atrophy-cerebellar type with umbilical cord mesenchymal stromal cells. Cytotherapy 13:913–917PubMedCrossRefGoogle Scholar
  115. 115.
    Jin JL, Liu Z, Lu ZJ, Guan DN, Wang C, Chen ZB, Zhang J, Zhang WY, Wu JY, Xu Y (2013) Safety and efficacy of umbilical cord mesenchymal stem cell therapy in hereditary spinocerebellar ataxia. Curr Neurovascular Res 10:11–20CrossRefGoogle Scholar
  116. 116.
    Miao X, Wu X, Shi W (2015) Umbilical cord mesenchymal stem cells in neurological disorders: a clinical study. Indian J Biochem Biophys 52:140–146PubMedGoogle Scholar
  117. 117.
    Fink KD, Deng P, Torrest A, Stewart H, Pollock K, Gruenloh W, Annett G, Tempkin T, Wheelock V, Nolta JA (2015) Developing stem cell therapies for juvenile and adult-onset Huntington’s disease. Regenerative Med 10:623–646CrossRefGoogle Scholar
  118. 118.
    Maucksch C, Vazey EM, Gordon RJ, Connor B (2013) Stem cell-based therapy for Huntington’s disease. J Cell Biochem 114:754–763PubMedCrossRefGoogle Scholar
  119. 119.
    Barker RA, de Beaufort I (2013) Scientific and ethical issues related to stem cell research and interventions in neurodegenerative disorders of the brain. Prog Neurobiol 110:63–73PubMedCrossRefGoogle Scholar
  120. 120.
    Dunnett SB, Rosser AE (2014) Challenges for taking primary and stem cells into clinical neurotransplantation trials for neurodegenerative disease. Neurobiol Dis 61:79–89PubMedCrossRefGoogle Scholar
  121. 121.
    Aboody K, Capela A, Niazi N, Stern JH, Temple S (2011) Translating stem cell studies to the clinic for CNS repair: current state of the art and the need for a Rosetta stone. Neuron 70:597–613PubMedCrossRefGoogle Scholar
  122. 122.
    Council EPa (2004) Directive 2004/23/EC of 31 March 2004, on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells. J Eur Union, pp 48–58Google Scholar
  123. 123.
    Qiu Z, Farnsworth SL, Mishra A, Hornsby PJ (2013) Patient-specific induced pluripotent stem cells in neurological disease modeling: the importance of nonhuman primate models. Stem Cells Cloning Adv App 6:19–29Google Scholar
  124. 124.
    Chow A, Morshead CM (2016) Cyclosporin A enhances neurogenesis in the dentate gyrus of the hippocampus. Stem Cell Res 16:79–87PubMedCrossRefGoogle Scholar
  125. 125.
    Erlandsson A, Lin CH, Yu F, Morshead CM (2011) Immunosuppression promotes endogenous neural stem and progenitor cell migration and tissue regeneration after ischemic injury. Exp Neurol 230:48–57PubMedCrossRefGoogle Scholar
  126. 126.
    Dooley D, Vidal P, Hendrix S (2014) Immunopharmacological intervention for successful neural stem cell therapy: new perspectives in CNS neurogenesis and repair. Pharmacol Ther 141:21–31PubMedCrossRefGoogle Scholar
  127. 127.
    Pluchino S, Zanotti L, Brambilla E, Rovere-Querini P, Capobianco A, Alfaro-Cervello C, Salani G, Cossetti C, Borsellino G, Battistini L et al (2009) Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function. PLoS ONE 4:e5959PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, Martinello M, Cattalini A, Bergami A, Furlan R et al (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436:266–271PubMedCrossRefGoogle Scholar
  129. 129.
    Han SS, Williams LA, Eggan KC (2011) Constructing and deconstructing stem cell models of neurological disease. Neuron 70:626–644PubMedCrossRefGoogle Scholar
  130. 130.
    Huch M, Koo BK (2015) Modeling mouse and human development using organoid cultures. Development 142:3113–3125PubMedCrossRefGoogle Scholar
  131. 131.
    Kelava I, Lancaster MA (2016) Dishing out mini-brains: current progress and future prospects in brain organoid research. Dev BiolPubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125PubMedCrossRefGoogle Scholar
  133. 133.
    Ertl P, Sticker D, Charwat V, Kasper C, Lepperdinger G (2014) Lab-on-a-chip technologies for stem cell analysis. Trends Biotechnol 32:245–253CrossRefPubMedGoogle Scholar
  134. 134.
    Ghaemmaghami AM, Hancock MJ, Harrington H, Kaji H, Khademhosseini A (2012) Biomimetic tissues on a chip for drug discovery. Drug Discov Today 17:173–181PubMedCrossRefGoogle Scholar
  135. 135.
    Neuzi P, Giselbrecht S, Lange K, Huang TJ, Manz A (2012) Revisiting lab-on-a-chip technology for drug discovery. Nat Rev Drug Discovery 11:620–632PubMedCrossRefGoogle Scholar
  136. 136.
    Maclean FL, Rodriguez AL, Parish CL, Williams RJ, Nisbet DR (2016) Integrating biomaterials and stem cells for neural regeneration. Stem Cells Dev 25:214–226PubMedCrossRefGoogle Scholar
  137. 137.
    Gu Q, Tomaskovic-Crook E, Lozano R, Chen Y, Kapsa RM, Zhou Q, Wallace GG, Crook JM (2016) Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells. Adv Healthc Mater 5:1429–1438PubMedCrossRefGoogle Scholar
  138. 138.
    Hsieh FY, Lin HH, Hsu SH (2015) 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 71:48–57PubMedCrossRefGoogle Scholar
  139. 139.
    Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Juopperi TA, Kim WR, Chiang CH, Yu H, Margolis RL, Ross CA, Ming GL, Song H (2012) Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells. Mol Brain 5:17PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Zhang N, An MC, Montoro D, Ellerby LM (2010) Characterization of human Huntington’s disease cell model from induced pluripotent stem cells. PLoS Curr 2, RRN1193PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Marthaler AG, Tubsuwan A, Schmid B, Poulsen UB, Engelbrecht AF, Mau-Holzmann UA, Hyttel P, Nielsen TT, Nielsen JE, Holst B (2016) Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H266. Stem Cell Res 16:202–205PubMedCrossRefGoogle Scholar
  143. 143.
    Xia G, Santostefano K, Hamazaki T, Liu J, Subramony SH, Terada N, Ashizawa T (2013) Generation of human-induced pluripotent stem cells to model spinocerebellar ataxia type 2 in vitro. J Mol Neurosci 51:237–248PubMedCrossRefGoogle Scholar
  144. 144.
    Luo Y, Fan Y, Zhou B, Xu Z, Chen Y, Sun X (2012) Generation of induced pluripotent stem cells from skin fibroblasts of a patient with olivopontocerebellar atrophy. Tohoku J Exp Med 226:151–159PubMedCrossRefGoogle Scholar
  145. 145.
    An MC, Zhang N, Scott G, Montoro D, Wittkop T, Mooney S, Melov S, Ellerby LM (2012) Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 11:253–263PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Liliana S. Mendonça
    • 1
    • 2
  • Isabel Onofre
    • 1
  • Catarina Oliveira Miranda
    • 1
    • 2
  • Rita Perfeito
    • 1
    • 2
  • Clévio Nóbrega
    • 1
    • 3
    • 4
    • 5
  • Luís Pereira de Almeida
    • 1
    • 6
  1. 1.Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
  2. 2.Interdisciplinary Research InstituteUniversity of CoimbraCoimbraPortugal
  3. 3.Department of Biomedical Sciences and MedicineUniversity of AlgarveFaroPortugal
  4. 4.Centre for Biomedical ResearchUniversity of AlgarveFaroPortugal
  5. 5.Algarve Biomedical CenterUniversity of AlgarveFaroPortugal
  6. 6.Faculty of PharmacyUniversity of CoimbraCoimbraPortugal

Personalised recommendations