Gene Therapies for Polyglutamine Diseases

  • Carlos A. Matos
  • Vítor Carmona
  • Udaya-Geetha Vijayakumar
  • Sara Lopes
  • Patrícia Albuquerque
  • Mariana Conceição
  • Rui Jorge Nobre
  • Clévio Nóbrega
  • Luís Pereira de Almeida
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1049)


Polyglutamine diseases are hereditary degenerative disorders of the nervous system that have remained, to this date, untreatable. Promisingly, investigation into their molecular etiology and the development of increasingly perfected tools have contributed to the design of novel strategies with therapeutic potential. Encouraging studies have explored gene therapy as a means to counteract cell demise and loss in this context. The current chapter addresses the two main focuses of research in the area: the characteristics of the systems used to deliver nucleic acids to cells and the molecular and cellular actions of the therapeutic agents. Vectors used in gene therapy have to satisfyingly reach the tissues and cell types of interest, while eliciting the lowest toxicity possible. Both viral and non-viral systems have been developed for the delivery of nucleic acids to the central nervous system, each with its respective advantages and shortcomings. Since each polyglutamine disease is caused by mutation of a single gene, many gene therapy strategies have tried to halt degeneration by silencing the corresponding protein products, usually recurring to RNA interference. The potential of small interfering RNAs, short hairpin RNAs and microRNAs has been investigated. Overexpression of protective genes has also been evaluated as a means of decreasing mutant protein toxicity and operate beneficial alterations. Recent gene editing tools promise yet other ways of interfering with the disease-causing genes, at the most upstream points possible. Results obtained in both cell and animal models encourage further delving into this type of therapeutic strategies and support the future use of gene therapy in the treatment of polyglutamine diseases.


Polyglutamine diseases Gene therapy Gene silencing RNA interference Viral and non-viral vectors 


  1. 1.
    Kaufmann KB, Buning H, Galy A, Schambach A, Grez M (2013) Gene therapy on the move. EMBO Mol Med 5:1642–1661PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Wirth T, Parker N, Yla-Herttuala S (2013) History of gene therapy. Gene 525:162–169PubMedCrossRefGoogle Scholar
  3. 3.
    Gatchel JR, Zoghbi HY (2005) Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6:743–755CrossRefPubMedGoogle Scholar
  4. 4.
    Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Boudreau RL, Rodriguez-Lebron E, Davidson BL (2011) RNAi medicine for the brain: progresses and challenges. Hum Mol Genet 20:R21–R27PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23:217–247PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG (2014) Non-viral vectors for gene-based therapy. Nat Rev Genet 15:541–555PubMedCrossRefGoogle Scholar
  8. 8.
    Carroll JB, Warby SC, Southwell AL, Doty CN, Greenlee S, Skotte N, Hung G, Bennett CF, Freier SM, Hayden MR (2011) Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the huntington disease gene/Allele-specific silencing of mutant Huntingtin. Mol Ther 19:2178–2185PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    DiFiglia M, Sena-Esteves M, Chase K, Sapp E, Pfister E, Sass M, Yoder J, Reeves P, Pandey RK, Rajeev KG, Manoharan M, Sah DW, Zamore PD, Aronin N (2007) Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci U S A 104:17204–17209PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA, Artates JW, Weiss A, Cheng SH, Shihabuddin LS, Hung G, Bennett CF, Cleveland DW (2012) Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 74:1031–1044PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Østergaard ME, Southwell AL, Kordasiewicz H, Watt AT, Skotte NH, Doty CN, Vaid K, Villanueva EB, Swayze EE, Frank Bennett C, Hayden MR, Seth PP (2013) Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Res 41:9634–9650PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Yu D, Pendergraff H, Liu J, Kordasiewicz HB, Cleveland DW, Swayze EE, Lima WF, Crooke ST, Prakash TP, Corey DR (2012) Single-stranded RNAs use RNAi to potently and Allele-selectively inhibit mutant Huntingtin expression. Cell 150:895–908PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, Lee SK, Shankar P, Manjunath N (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:39–43PubMedCrossRefGoogle Scholar
  14. 14.
    Gong C, Li X, Xu L, Zhang YH (2012) Target delivery of a gene into the brain using the RVG29-oligoarginine peptide. Biomaterials 33:3456–3463PubMedCrossRefGoogle Scholar
  15. 15.
    Heitz F, Morris MC, Divita G (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 157:195–206PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Zhan C, Yan Z, Xie C, Lu W (2010) Loop 2 of ophiophagus hannah toxin b binds with neuronal nicotinic acetylcholine receptors and enhances intracranial drug delivery. Mol Pharm 7:1940–1947PubMedCrossRefGoogle Scholar
  17. 17.
    Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Dunlap DD, Maggi A, Soria MR, Monaco L (1997) Nanoscopic structure of DNA condensed for gene delivery. Nucleic Acids Res 25:3095–3101PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Son S, Hwang do W, Singha K, Jeong JH, Park TG, Lee DS, Kim WJ (2011) RVG peptide tethered bioreducible polyethylenimine for gene delivery to brain. J Controlled Release Official J Controlled Release Soc 155:18–25PubMedCrossRefGoogle Scholar
  20. 20.
    Hwang do W, Son S, Jang J, Youn H, Lee S, Lee D, Lee YS, Jeong JM, Kim WJ, Lee DS (2011) A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. Biomaterials 32:4968–4975PubMedCrossRefGoogle Scholar
  21. 21.
    Ohno M, Cole SL, Yasvoina M, Zhao J, Citron M, Berry R, Disterhoft JF, Vassar R (2007) BACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic mic. Neurobiol Dis 26:134–145PubMedCrossRefGoogle Scholar
  22. 22.
    Park TE, Singh B, Li H, Lee JY, Kang SK, Choi YJ, Cho CS (2015) Enhanced BBB permeability of osmotically active poly(mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer’s disease. Biomaterials 38:61–71PubMedCrossRefGoogle Scholar
  23. 23.
    Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A New class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132CrossRefGoogle Scholar
  24. 24.
    Duncan R, Izzo L (2005) Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 57:2215–2237PubMedCrossRefGoogle Scholar
  25. 25.
    Liu Y, Huang R, Han L, Ke W, Shao K, Ye L, Lou J, Jiang C (2009) Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomaterials 30:4195–4202PubMedCrossRefGoogle Scholar
  26. 26.
    Huang R-Q, Qu Y-H, Ke W-L, Zhu J-H, Pei Y-Y, Jiang C (2007) Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. FASEB J 21:1117–1125PubMedCrossRefGoogle Scholar
  27. 27.
    Huang R, Ke W, Liu Y, Jiang C, Pei Y (2008) The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain. Biomaterials 29:238–246PubMedCrossRefGoogle Scholar
  28. 28.
    Ke W, Shao K, Huang R, Han L, Liu Y, Li J, Kuang Y, Ye L, Lou J, Jiang C (2009) Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials 30:6976–6985PubMedCrossRefGoogle Scholar
  29. 29.
    Pérez-Martínez F, Carrión B, Ceña V (2012) The use of nanoparticles for gene therapy in the nervous system. J Alzheimers Dis 31:697–710PubMedGoogle Scholar
  30. 30.
    Boado R (2007) Blood–brain barrier transport of non-viral gene and RNAi therapeutics. Pharm Res 24:1772–1787PubMedCrossRefGoogle Scholar
  31. 31.
    Boado RJ (2005) RNA interference and nonviral targeted gene therapy of experimental brain cancer. NeuroRx 2:139–150PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Zhang Y, Zhang Y-F, Bryant J, Charles A, Boado RJ, Pardridge WM (2004) Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res 10:3667–3677PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang Y, Zhu C, Pardridge W (2002) Antisense gene therapy of brain cancer with an artificial virus gene delivery system. Mol Ther 6:67–72PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang Y, Calon F, Zhu C, Boado R, Pardridge W (2003) Intravenous nonviral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism. Hum Gene Ther 14:1–12PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang Y, Boado R, Pardridge W (2003) Absence of toxicity of chronic weekly intravenous gene therapy with pegylated immunoliposomes. Pharm Res 20:1779–1785PubMedCrossRefGoogle Scholar
  36. 36.
    Conceição M, Mendonca L, Nobrega C, Gomes C, Costa P, Hirai H, Moreira JN, Lima MC, Manjunath N, Pereira de Almeida L (2016) Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado-Joseph disease neurological phenotype. Biomaterials 82:124–137PubMedCrossRefGoogle Scholar
  37. 37.
    Costa PM, Cardoso AL, Mendonca LS, Serani A, Custodia C, Conceicao M, Simoes S, Moreira JN, Pereira de Almeida L, Pedroso de Lima MC (2013) Tumor-targeted chlorotoxin-coupled nanoparticles for nucleic acid delivery to glioblastoma cells: a promising system for glioblastoma treatment. Mol Ther Nucleic Acids 2:e100PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Di Martino MT, Campani V, Misso G, Gallo Cantafio ME, Gulla A, Foresta U, Guzzi PH, Castellano M, Grimaldi A, Gigantino V, Franco R, Lusa S, Cannataro M, Tagliaferri P, De Rosa G, Tassone P, Caraglia M (2014) In vivo activity of miR-34a mimics delivered by stable nucleic acid lipid particles (SNALPs) against multiple myeloma. PLoS ONE 9:e90005PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Geisbert TW, Hensley LE, Kagan E, Yu EZ, Geisbert JB, Daddario-DiCaprio K, Fritz EA, Jahrling PB, McClintock K, Phelps JR, Lee AC, Judge A, Jeffs LB, MacLachlan I (2006) Postexposure protection of guinea pigs against a lethal ebola virus challenge is conferred by RNA interference. J Infect Dis 193:1650–1657PubMedCrossRefGoogle Scholar
  40. 40.
    Geisbert TW, Lee AC, Robbins M, Geisbert JB, Honko AN, Sood V, Johnson JC, de Jong S, Tavakoli I, Judge A, Hensley LE, Maclachlan I (2010) Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet 375:1896–1905PubMedCrossRefGoogle Scholar
  41. 41.
    Judge AD, Robbins M, Tavakoli I, Levi J, Hu L, Fronda A, Ambegia E, McClintock K, MacLachlan I (2009) Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J Clin Investig 119:661–673PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, Hartsough K, Machemer L, Radka S, Jadhav V, Vaish N, Zinnen S, Vargeese C, Bowman K, Shaffer CS, Jeffs LB, Judge A, MacLachlan I, Polisky B (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23:1002–1007PubMedCrossRefGoogle Scholar
  43. 43.
    Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, Harborth J, Heyes JA, Jeffs LB, John M, Judge AD, Lam K, McClintock K, Nechev LV, Palmer LR, Racie T, Rohl I, Seiffert S, Shanmugam S, Sood V, Soutschek J, Toudjarska I, Wheat AJ, Yaworski E, Zedalis W, Koteliansky V, Manoharan M, Vornlocher HP, MacLachlan I (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114PubMedCrossRefGoogle Scholar
  44. 44.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659PubMedCrossRefGoogle Scholar
  45. 45.
    El Andaloussi S, Mager I, Breakefield XO, Wood MJA (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357CrossRefGoogle Scholar
  46. 46.
    Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345PubMedCrossRefGoogle Scholar
  47. 47.
    Cooper JM, Wiklander PB, Nordin JZ, Al-Shawi R, Wood MJ, Vithlani M, Schapira AH, Simons JP, El-Andaloussi S, Alvarez-Erviti L (2014) Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord Official J Mov Disord Soc 29:1476–1485CrossRefGoogle Scholar
  48. 48.
    Dewannieux M, Harper F, Richaud A, Letzelter C, Ribet D, Pierron G, Heidmann T (2006) Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res 16:1548–1556PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Naldini L (2015) Gene therapy returns to centre stage. Nature 526:351–360PubMedCrossRefGoogle Scholar
  50. 50.
    Saraiva J, Nobre RJ, Pereira de Almeida L (2016) Gene therapy for the CNS using AAVs: the impact of systemic delivery by AAV9. J Control Release 241:94–109PubMedCrossRefGoogle Scholar
  51. 51.
    Rowe WP, Huebner RJ, Bell JA (1957) Definition and outline of contemporary information on the adenovirus group. Ann N Y Acad Sci 67:255–261PubMedCrossRefGoogle Scholar
  52. 52.
    Le Gal La Salle G, Robert JJ, Berrard S, Ridoux V, Stratford-Perricaudet LD, Perricaudet M, Mallet J (1993) An adenovirus vector for gene transfer into neurons and glia in the brain. Science 259:988-990PubMedCrossRefGoogle Scholar
  53. 53.
    Byrnes AP, MacLaren RE, Charlton HM (1996) Immunological instability of persistent adenovirus vectors in the brain: peripheral exposure to vector leads to renewed inflammation, reduced gene expression, and demyelination. J Neurosci 16:3045–3055PubMedCrossRefGoogle Scholar
  54. 54.
    Thomas CE, Schiedner G, Kochanek S, Castro MG, Lowenstein PR (2000) Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors: toward realistic long-term neurological gene therapy for chronic diseases. Proc Natl Acad Sci U S A 97:7482–7487PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wilson JM (2009) Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency. Mol Genet Metab 96:151–157PubMedCrossRefGoogle Scholar
  56. 56.
    Junyent F, Kremer EJ (2015) CAV-2–why a canine virus is a neurobiologist’s best friend. Curr Opin Pharmacol 24:86–93PubMedCrossRefGoogle Scholar
  57. 57.
    Huang B, Schiefer J, Sass C, Landwehrmeyer GB, Kosinski CM, Kochanek S (2007) High-capacity adenoviral vector-mediated reduction of huntingtin aggregate load in vitro and in vivo. Hum Gene Ther 18:303–311PubMedCrossRefGoogle Scholar
  58. 58.
    Oehmig A, Fraefel C, Breakefield XO (2004) Update on herpesvirus amplicon vectors. Mol Ther 10:630–643PubMedCrossRefGoogle Scholar
  59. 59.
    Chiocca EA, Choi BB, Cai WZ, DeLuca NA, Schaffer PA, DiFiglia M, Breakefield XO, Martuza RL (1990) Transfer and expression of the lacZ gene in rat brain neurons mediated by herpes simplex virus mutants. New Biol 2:739–746PubMedGoogle Scholar
  60. 60.
    Diefenbach RJ, Miranda-Saksena M, Douglas MW, Cunningham AL (2008) Transport and egress of herpes simplex virus in neurons. Rev Med Virol 18:35–51PubMedCrossRefGoogle Scholar
  61. 61.
    Peruzzi PP, Lawler SE, Senior SL, Dmitrieva N, Edser PA, Gianni D, Chiocca EA, Wade-Martins R (2009) Physiological transgene regulation and functional complementation of a neurological disease gene deficiency in neurons. Mol Ther 17:1517–1526PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Sena-Esteves M, Saeki Y, Fraefel C, Breakefield XO (2000) HSV-1 amplicon vectors–simplicity and versatility. Mol Ther 2:9–15PubMedCrossRefGoogle Scholar
  63. 63.
    Nobre RJ, Almeida LP (2011) Gene therapy for Parkinson’s and Alzheimer’s diseases: from the bench to clinical trials. Curr Pharm Des 17:3434–3445PubMedCrossRefGoogle Scholar
  64. 64.
    Deglon N, Aebischer P (2002) Lentiviruses as vectors for CNS diseases. Curr Top Microbiol Immunol 261:191–209PubMedGoogle Scholar
  65. 65.
    Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669–672PubMedCrossRefGoogle Scholar
  66. 66.
    Hacein-Bey-Abina S, Hauer J, Lim A, Picard C, Wang GP, Berry CC, Martinache C, Rieux-Laucat F, Latour S, Belohradsky BH, Leiva L, Sorensen R, Debre M, Casanova JL, Blanche S, Durandy A, Bushman FD, Fischer A, Cavazzana-Calvo M (2010) Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 363:355–364PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Blomer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH (1997) Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 71:6641–6649PubMedPubMedCentralGoogle Scholar
  68. 68.
    Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267PubMedCrossRefGoogle Scholar
  69. 69.
    Osten P, Dittgen T, Licznerski P (2006) Lentivirus-based genetic manipulations in neurons in vivo. In: Kittler JT, Moss SJ (eds) The dynamic synapse: molecular methods in ionotropic receptor biology. Boca Raton (FL)Google Scholar
  70. 70.
    Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A 90:8033–8037PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Deglon N, Tseng JL, Bensadoun JC, Zurn AD, Arsenijevic Y, Pereira de Almeida L, Zufferey R, Trono D, Aebischer P (2000) Self-inactivating lentiviral vectors with enhanced transgene expression as potential gene transfer system in Parkinson’s disease. Hum Gene Ther 11:179–190PubMedCrossRefGoogle Scholar
  72. 72.
    Philippe S, Sarkis C, Barkats M, Mammeri H, Ladroue C, Petit C, Mallet J, Serguera C (2006) Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc Natl Acad Sci U S A 103:17684–17689PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C, Dionisio F, Calabria A, Giannelli S, Castiello MC, Bosticardo M, Evangelio C, Assanelli A, Casiraghi M, Di Nunzio S, Callegaro L, Benati C, Rizzardi P, Pellin D, Di Serio C, Schmidt M, Von Kalle C, Gardner J, Mehta N, Neduva V, Dow DJ, Galy A, Miniero R, Finocchi A, Metin A, Banerjee PP, Orange JS, Galimberti S, Valsecchi MG, Biffi A, Montini E, Villa A, Ciceri F, Roncarolo MG, Naldini L (2013) Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 341:1233151PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T, Baldoli C, Martino S, Calabria A, Canale S, Benedicenti F, Vallanti G, Biasco L, Leo S, Kabbara N, Zanetti G, Rizzo WB, Mehta NA, Cicalese MP, Casiraghi M, Boelens JJ, Del Carro U, Dow DJ, Schmidt M, Assanelli A, Neduva V, Di Serio C, Stupka E, Gardner J, von Kalle C, Bordignon C, Ciceri F, Rovelli A, Roncarolo MG, Aiuti A, Sessa M, Naldini L (2013) Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341:1233158PubMedCrossRefGoogle Scholar
  75. 75.
    Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, Vidaud M, Abel U, Dal-Cortivo L, Caccavelli L, Mahlaoui N, Kiermer V, Mittelstaedt D, Bellesme C, Lahlou N, Lefrere F, Blanche S, Audit M, Payen E, Leboulch P, l’Homme B, Bougneres P, Von Kalle C, Fischer A, Cavazzana-Calvo M, Aubourg P (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326:818–823PubMedCrossRefGoogle Scholar
  76. 76.
    Drouet V, Perrin V, Hassig R, Dufour N, Auregan G, Alves S, Bonvento G, Brouillet E, Luthi-Carter R, Hantraye P, Deglon N (2009) Sustained effects of nonallele-specific Huntingtin silencing. Ann Neurol 65:276–285PubMedCrossRefGoogle Scholar
  77. 77.
    Drouet V, Ruiz M, Zala D, Feyeux M, Auregan G, Cambon K, Troquier L, Carpentier J, Aubert S, Merienne N, Bourgois-Rocha F, Hassig R, Rey M, Dufour N, Saudou F, Perrier AL, Hantraye P, Deglon N (2014) Allele-specific silencing of mutant huntingtin in rodent brain and human stem cells. PLoS ONE 9:e99341PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Francelle L, Galvan L, Gaillard MC, Petit F, Bernay B, Guillermier M, Bonvento G, Dufour N, Elalouf JM, Hantraye P, Deglon N, de Chaldee M, Brouillet E (2015) Striatal long noncoding RNA Abhd11os is neuroprotective against an N-terminal fragment of mutant huntingtin in vivo. Neurobiol Aging 36(1601):e1607–e1616Google Scholar
  79. 79.
    Kleiman RJ, Kimmel LH, Bove SE, Lanz TA, Harms JF, Romegialli A, Miller KS, Willis A, des Etages S, Kuhn M, Schmidt CJ (2011) Chronic suppression of phosphodiesterase 10A alters striatal expression of genes responsible for neurotransmitter synthesis, neurotransmission, and signaling pathways implicated in Huntington’s disease. J Pharmacol Exp Ther 336:64–76PubMedCrossRefGoogle Scholar
  80. 80.
    Taylor DM, Moser R, Regulier E, Breuillaud L, Dixon M, Beesen AA, Elliston L, Silva Santos Mde F, Kim J, Jones L, Goldstein DR, Ferrante RJ, Luthi-Carter R (2013) MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington’s disease via additive effects of JNK and p 38 inhibition. J Neurosci 33:2313–2325PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Alves S, Nascimento-Ferreira I, Auregan G, Hassig R, Dufour N, Brouillet E, Pedroso de Lima MC, Hantraye P, Pereira de Almeida L, Deglon N (2008) Allele-specific RNA silencing of mutant ataxin-3 mediates neuroprotection in a rat model of Machado-Joseph disease. PLoS ONE 3:e3341PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Nascimento-Ferreira I, Nobrega C, Vasconcelos-Ferreira A, Onofre I, Albuquerque D, Aveleira C, Hirai H, Deglon N, Pereira de Almeida L (2013) Beclin 1 mitigates motor and neuropathological deficits in genetic mouse models of Machado-Joseph disease. Brain 136:2173–2188PubMedCrossRefGoogle Scholar
  83. 83.
    Nascimento-Ferreira I, Santos-Ferreira T, Sousa-Ferreira L, Auregan G, Onofre I, Alves S, Dufour N, Colomer Gould VF, Koeppen A, Deglon N, Pereira de Almeida L (2011) Overexpression of the autophagic beclin-1 protein clears mutant ataxin-3 and alleviates Machado-Joseph disease. Brain 134:1400–1415PubMedCrossRefGoogle Scholar
  84. 84.
    Nóbrega C, Carmo-Silva S, Albuquerque D, Vasconcelos-Ferreira A, Vijayakumar UG, Mendonca L, Hirai H, de Almeida LP (2015) Re-establishing ataxin-2 downregulates translation of mutant ataxin-3 and alleviates Machado-Joseph disease. Brain A J Neurol 138:3537–3554CrossRefGoogle Scholar
  85. 85.
    Nóbrega C, Nascimento-Ferreira I, Onofre I, Albuquerque D, Deglon N, de Almeida LP (2014) RNA interference mitigates motor and neuropathological deficits in a cerebellar mouse model of Machado-Joseph disease. PLoS ONE 9:e100086PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Nóbrega C, Nascimento-Ferreira I, Onofre I, Albuquerque D, Hirai H, Deglon N, de Almeida LP (2013) Silencing mutant ataxin-3 rescues motor deficits and neuropathology in Machado-Joseph disease transgenic mice. PLoS ONE 8:e52396PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Saida H, Matsuzaki Y, Takayama K, Iizuka A, Konno A, Yanagi S, Hirai H (2014) One-year follow-up of transgene expression by integrase-defective lentiviral vectors and their therapeutic potential in spinocerebellar ataxia model mice. Gene Ther 21:820–827PubMedCrossRefGoogle Scholar
  88. 88.
    Torashima T, Koyama C, Iizuka A, Mitsumura K, Takayama K, Yanagi S, Oue M, Yamaguchi H, Hirai H (2008) Lentivector-mediated rescue from cerebellar ataxia in a mouse model of spinocerebellar ataxia. EMBO Rep 9:393–399PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Atchison RW, Casto BC, Hammon WM (1965) Adenovirus-associated defective virus particles. Science 149:754–756PubMedCrossRefGoogle Scholar
  90. 90.
    McCarty DM, Young SM Jr, Samulski RJ (2004) Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 38:819–845PubMedCrossRefGoogle Scholar
  91. 91.
    Grossman Z, Mendelson E, Brok-Simoni F, Mileguir F, Leitner Y, Rechavi G, Ramot B (1992) Detection of adeno-associated virus type 2 in human peripheral blood cells. J Gen Virol 73(Pt 4):961–966PubMedCrossRefGoogle Scholar
  92. 92.
    Bessis N, GarciaCozar FJ, Boissier MC (2004) Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther 11(Suppl 1):S10–S17PubMedCrossRefGoogle Scholar
  93. 93.
    Kaplitt MG, Leone P, Samulski RJ, Xiao X, Pfaff DW, O’Malley KL, During MJ (1994) Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 8:148–154PubMedCrossRefGoogle Scholar
  94. 94.
    McCown TJ, Xiao X, Li J, Breese GR, Samulski RJ (1996) Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res 713:99–107PubMedCrossRefGoogle Scholar
  95. 95.
    Leone P, Shera D, McPhee SW, Francis JS, Kolodny EH, Bilaniuk LT, Wang DJ, Assadi M, Goldfarb O, Goldman HW, Freese A, Young D, During MJ, Samulski RJ, Janson CG (2012) Long-term follow-up after gene therapy for canavan disease. Sci Transl Med 4:165ra163PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Cetin A, Komai S, Eliava M, Seeburg PH, Osten P (2006) Stereotaxic gene delivery in the rodent brain. Nat Protoc 1:3166–3173PubMedCrossRefGoogle Scholar
  97. 97.
    Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, Wilson JM (2004) Clades of Adeno-associated viruses are widely disseminated in human tissues. J Virol 78:6381–6388PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Wu Z, Asokan A, Samulski RJ (2006) Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther J Am Soc Gene Ther 14:316–327CrossRefGoogle Scholar
  99. 99.
    Cearley CN, Wolfe JH (2006) Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther 13:528–537PubMedCrossRefGoogle Scholar
  100. 100.
    Davidson BL, Stein CS, Heth JA, Martins I, Kotin RM, Derksen TA, Zabner J, Ghodsi A, Chiorini JA (2000) Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci U S A 97:3428–3432PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Bevan AK, Duque S, Foust KD, Morales PR, Braun L, Schmelzer L, Chan CM, McCrate M, Chicoine LG, Coley BD, Porensky PN, Kolb SJ, Mendell JR, Burghes AH, Kaspar BK (2011) Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol Ther 19:1971–1980PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27:59–65PubMedCrossRefGoogle Scholar
  103. 103.
    Wu Z, Yang H, Colosi P (2010) Effect of genome size on AAV vector packaging. Mol Ther 18:80–86PubMedCrossRefGoogle Scholar
  104. 104.
    Boudreau RL, McBride JL, Martins I, Shen S, Xing Y, Carter BJ, Davidson BL (2009) Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington’s disease mice. Mol Ther 17:1053–1063PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Dai Y, Dudek NL, Li Q, Fowler SC, Muma NA (2009) Striatal expression of a calmodulin fragment improved motor function, weight loss, and neuropathology in the R6/2 mouse model of Huntington’s disease. J Neurosci 29:11550–11559PubMedCrossRefGoogle Scholar
  106. 106.
    Dufour BD, Smith CA, Clark RL, Walker TR, McBride JL (2014) Intrajugular vein delivery of AAV9-RNAi prevents neuropathological changes and weight loss in Huntington’s disease mice. Mol Ther 22:797–810PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Franich NR, Fitzsimons HL, Fong DM, Klugmann M, During MJ, Young D (2008) AAV vector-mediated RNAi of mutant huntingtin expression is neuroprotective in a novel genetic rat model of Huntington’s disease. Mol Ther 16:947–956PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Grondin R, Kaytor MD, Ai Y, Nelson PT, Thakker DR, Heisel J, Weatherspoon MR, Blum JL, Burright EN, Zhang Z, Kaemmerer WF (2012) Six-month partial suppression of Huntingtin is well tolerated in the adult rhesus striatum. Brain A J Neurol 135:1197–1209CrossRefGoogle Scholar
  109. 109.
    Harper SQ, Staber PD, He X, Eliason SL, Martins IH, Mao Q, Yang L, Kotin RM, Paulson HL, Davidson BL (2005) RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A 102:5820–5825PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Keeler AM, Sapp E, Chase K, Sottosanti E, Danielson E, Pfister E, Stoica L, DiFiglia M, Aronin N, Sena-Esteves M (2016) Cellular analysis of silencing the Huntington’s disease gene using AAV9 mediated delivery of artificial micro rna into the striatum of Q140/Q140 mice. J Huntingtons Dis 5:239–248PubMedCrossRefGoogle Scholar
  111. 111.
    Kells AP, Fong DM, Dragunow M, During MJ, Young D, Connor B (2004) AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease. Mol Ther 9:682–688PubMedCrossRefGoogle Scholar
  112. 112.
    Kells AP, Henry RA, Connor B (2008) AAV-BDNF mediated attenuation of quinolinic acid-induced neuropathology and motor function impairment. Gene Ther 15:966–977PubMedCrossRefGoogle Scholar
  113. 113.
    Machida Y, Okada T, Kurosawa M, Oyama F, Ozawa K, Nukina N (2006) rAAV-mediated shRNA ameliorated neuropathology in Huntington disease model mouse. Biochem Biophys Res Commun 343:190–197PubMedCrossRefGoogle Scholar
  114. 114.
    McBride JL, During MJ, Wuu J, Chen EY, Leurgans SE, Kordower JH (2003) Structural and functional neuroprotection in a rat model of Huntington’s disease by viral gene transfer of GDNF. Exp Neurol 181:213–223PubMedCrossRefGoogle Scholar
  115. 115.
    McBride JL, Pitzer MR, Boudreau RL, Dufour B, Hobbs T, Ojeda SR, Davidson BL (2011) Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington’s disease. Mol Ther 19:2152–2162PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    McBride JL, Ramaswamy S, Gasmi M, Bartus RT, Herzog CD, Brandon EP, Zhou L, Pitzer MR, Berry-Kravis EM, Kordower JH (2006) Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington’s disease. Proc Natl Acad Sci U S A 103:9345–9350PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Ramaswamy S, Kordower JH (2012) Gene therapy for Huntington’s disease. Neurobiol Dis 48:243–254PubMedCrossRefGoogle Scholar
  118. 118.
    Rodriguez-Lebron E, Denovan-Wright EM, Nash K, Lewin AS, Mandel RJ (2005) Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington’s disease transgenic mice. Mol Ther 12:618–633PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Southwell AL, Ko J, Patterson PH (2009) Intrabody gene therapy ameliorates motor, cognitive, and neuropathological symptoms in multiple mouse models of Huntington’s disease. J Neurosci 29:13589–13602PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Stanek LM, Sardi SP, Mastis B, Richards AR, Treleaven CM, Taksir T, Misra K, Cheng SH, Shihabuddin LS (2014) Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington’s disease. Hum Gene Ther 25:461–474PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Boudreau RL, Martins I, Davidson BL (2009) Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther: J Am Soc Gene Ther 17:169–175CrossRefGoogle Scholar
  122. 122.
    Ito H, Fujita K, Tagawa K, Chen X, Homma H, Sasabe T, Shimizu J, Shimizu S, Tamura T, Muramatsu S, Okazawa H (2014) HMGB1 facilitates repair of mitochondrial DNA damage and extends the lifespan of mutant ataxin-1 knock-in mice. EMBO Mol Med 7:78–101PubMedCentralCrossRefGoogle Scholar
  123. 123.
    Keiser MS, Boudreau RL, Davidson BL (2014) Broad therapeutic benefit after RNAi expression vector delivery to deep cerebellar nuclei: implications for spinocerebellar ataxia type 1 therapy. Mol Ther 22:588–595PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Keiser MS, Geoghegan JC, Boudreau RL, Lennox KA, Davidson BL (2013) RNAi or overexpression: alternative therapies for Spinocerebellar Ataxia Type 1. Neurobiol Dis 56:6–13PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Keiser MS, Kordower JH, Gonzalez-Alegre P, Davidson BL (2015) Broad distribution of ataxin 1 silencing in rhesus cerebella for spinocerebellar ataxia type 1 therapy. Brain A J Neurol 138:3555–3566CrossRefGoogle Scholar
  126. 126.
    Taniguchi JB, Kondo K, Fujita K, Chen X, Homma H, Sudo T, Mao Y, Watase K, Tanaka T, Tagawa K, Tamura T, Muramatsu SI, Okazawa H (2016) RpA1 ameliorates symptoms of mutant ataxin-1 knock-in mice and enhances DNA damage repair. Human Mol GenetGoogle Scholar
  127. 127.
    Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, Paulson HL, Yang L, Kotin RM, Davidson BL (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10:816–820PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Costa Mdo C, Luna-Cancalon K, Fischer S, Ashraf NS, Ouyang M, Dharia RM, Martin-Fishman L, Yang Y, Shakkottai VG, Davidson BL, Rodriguez-Lebron E, Paulson HL (2013) Toward RNAi therapy for the polyglutamine disease Machado-Joseph disease. Mol Ther J Am Soc Gene Ther 21:1898–1908CrossRefGoogle Scholar
  129. 129.
    Duarte-Neves J, Goncalves N, Cunha-Santos J, Simoes AT, den Dunnen WF, Hirai H, Kugler S, Cavadas C, Pereira de Almeida L (2015) Neuropeptide Y mitigates neuropathology and motor deficits in mouse models of Machado-Joseph disease. Hum Mol Genet 24:5451–5463PubMedCrossRefGoogle Scholar
  130. 130.
    Konno A, Shuvaev AN, Miyake N, Miyake K, Iizuka A, Matsuura S, Huda F, Nakamura K, Yanagi S, Shimada T, Hirai H (2014) Mutant ataxin-3 with an abnormally expanded polyglutamine chain disrupts dendritic development and metabotropic glutamate receptor signaling in mouse cerebellar Purkinje cells. Cerebellum 13:29–41PubMedCrossRefGoogle Scholar
  131. 131.
    Rodriguez-Lebron E, Costa Mdo C, Luna-Cancalon K, Peron TM, Fischer S, Boudreau RL, Davidson BL, Paulson HL (2013) Silencing mutant ATXN3 expression resolves molecular phenotypes in SCA3 transgenic mice. Mol Ther J Am Soc Gene Ther 21:1909–1918CrossRefGoogle Scholar
  132. 132.
    Simões AT, Goncalves N, Koeppen A, Deglon N, Kugler S, Duarte CB, Pereira de Almeida L (2012) Calpastatin-mediated inhibition of calpains in the mouse brain prevents mutant ataxin 3 proteolysis, nuclear localization and aggregation, relieving Machado-Joseph disease. Brain 135:2428–2439PubMedCrossRefGoogle Scholar
  133. 133.
    Miyazaki Y, Du X, Muramatsu S, Gomez CM (2016) An miRNA-mediated therapy for SCA6 blocks IRES-driven translation of the CACNA1A second cistron. Sci Transl Med 8:347ra394Google Scholar
  134. 134.
    Ramachandran PS, Bhattarai S, Singh P, Boudreau RL, Thompson S, Laspada AR, Drack AV, Davidson BL (2014) RNA interference-based therapy for spinocerebellar ataxia type 7 retinal degeneration. PLoS ONE 9:e95362PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Ramachandran PS, Boudreau RL, Schaefer KA, La Spada AR, Davidson BL (2014) Nonallele specific silencing of ataxin-7 improves disease phenotypes in a mouse model of SCA7. Mol Ther 22:1635–1642PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Bauer PO, Nukina N (2009) The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. J Neurochem 110:1737–1765PubMedCrossRefGoogle Scholar
  137. 137.
    Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240PubMedCrossRefGoogle Scholar
  139. 139.
    Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10:185–191PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216PubMedCrossRefGoogle Scholar
  141. 141.
    Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355PubMedCrossRefGoogle Scholar
  142. 142.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  143. 143.
    Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17:438–442PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Pardridge WM (2007) shRNA and siRNA delivery to the brain. Adv Drug Deliv Rev 59:141–152PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Thakker DR, Hoyer D, Cryan JF (2006) Interfering with the brain: use of RNA interference for understanding the pathophysiology of psychiatric and neurological disorders. Pharmacol Ther 109:413–438PubMedCrossRefGoogle Scholar
  146. 146.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498PubMedCrossRefGoogle Scholar
  147. 147.
    Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574PubMedCrossRefGoogle Scholar
  148. 148.
    Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33PubMedCrossRefGoogle Scholar
  149. 149.
    Paul CP, Good PD, Winer I, Engelke DR (2002) Effective expression of small interfering RNA in human cells. Nat Biotechnol 20:505–508PubMedCrossRefGoogle Scholar
  150. 150.
    Davidson BL, Harper SQ (2005) Viral delivery of recombinant short hairpin RNAs. Methods Enzymol 392:145–173PubMedCrossRefGoogle Scholar
  151. 151.
    Watson LM, Wood MJ (2012) RNA therapy for polyglutamine neurodegenerative diseases. Expert Rev Mol Med 14:e3PubMedCrossRefGoogle Scholar
  152. 152.
    Scholefield J, Wood MJ (2010) Therapeutic gene silencing strategies for polyglutamine disorders. Trends Genet TIG 26:29–38PubMedCrossRefGoogle Scholar
  153. 153.
    Rodriguez-Lebron E, Paulson HL (2006) Allele-specific RNA interference for neurological disease. Gene Ther 13:576–581PubMedCrossRefGoogle Scholar
  154. 154.
    Alves S, Nascimento-Ferreira I, Dufour N, Hassig R, Auregan G, Nobrega C, Brouillet E, Hantraye P, Pedroso de Lima MC, Deglon N, de Almeida LP (2010) Silencing ataxin-3 mitigates degeneration in a rat model of Machado-Joseph disease: no role for wild-type ataxin-3? Hum Mol Genet 19:2380–2394PubMedCrossRefGoogle Scholar
  155. 155.
    Wang YL, Liu W, Wada E, Murata M, Wada K, Kanazawa I (2005) Clinico-pathological rescue of a model mouse of Huntington’s disease by siRNA. Neurosci Res 53:241–249PubMedCrossRefGoogle Scholar
  156. 156.
    Alterman JF, Hall LM, Coles AH, Hassler MR, Didiot MC, Chase K, Abraham J, Sottosanti E, Johnson E, Sapp E, Osborn MF, Difiglia M, Aronin N, Khvorova A (2015) Hydrophobically modified siRNAs silence Huntingtin mRNA in primary neurons and mouse brain. Mol Ther Nucleic Acids 4:e266PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Didiot MC, Hall LM, Coles AH, Haraszti RA, Godinho BM, Chase K, Sapp E, Ly S, Alterman JF, Hassler MR, Echeverria D, Raj L, Morrissey DV, DiFiglia M, Aronin N, Khvorova A (2016) Exosome-mediated delivery of hydrophobically modified siRNA for Huntingtin mRNA silencing. Mol TherGoogle Scholar
  158. 158.
    Grondin R, Ge P, Chen Q, Sutherland JE, Zhang Z, Gash DM, Stiles DK, Stewart GR, Sah DW, Kaemmerer WF (2015) Onset time and durability of Huntingtin suppression in Rhesus Putamen after direct infusion of antihuntingtin siRNA. Mol Ther Nucleic Acids 4:e245PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Stiles DK, Zhang Z, Ge P, Nelson B, Grondin R, Ai Y, Hardy P, Nelson PT, Guzaev AP, Butt MT, Charisse K, Kosovrasti V, Tchangov L, Meys M, Maier M, Nechev L, Manoharan M, Kaemmerer WF, Gwost D, Stewart GR, Gash DM, Sah DW (2012) Widespread suppression of huntingtin with convection-enhanced delivery of siRNA. Exp Neurol 233:463–471PubMedCrossRefGoogle Scholar
  160. 160.
    Gaspar C, Lopes-Cendes I, DeStefano AL, Maciel P, Silveira I, Coutinho P, MacLeod P, Sequeiros J, Farrer LA, Rouleau GA (1996) Linkage disequilibrium analysis in Machado-Joseph disease patients of different ethnic origins. Hum Genet 98:620–624PubMedCrossRefGoogle Scholar
  161. 161.
    Gaspar C, Lopes-Cendes I, Hayes S, Goto J, Arvidsson K, Dias A, Silveira I, Maciel P, Coutinho P, Lima M, Zhou YX, Soong BW, Watanabe M, Giunti P, Stevanin G, Riess O, Sasaki H, Hsieh M, Nicholson GA, Brunt E, Higgins JJ, Lauritzen M, Tranebjaerg L, Volpini V, Wood N, Ranum L, Tsuji S, Brice A, Sequeiros J, Rouleau GA (2001) Ancestral origins of the Machado-Joseph disease mutation: a worldwide haplotype study. Am J Hum Genet 68:523–528PubMedCrossRefGoogle Scholar
  162. 162.
    Li Y, Yokota T, Matsumura R, Taira K, Mizusawa H (2004) Sequence-dependent and independent inhibition specific for mutant ataxin-3 by small interfering RNA. Ann Neurol 56:124–129PubMedCrossRefGoogle Scholar
  163. 163.
    Scholefield J, Watson L, Smith D, Greenberg J, Wood MJ (2014) Allele-specific silencing of mutant Ataxin-7 in SCA7 patient-derived fibroblasts. Eur J Human Genet EJHG 22:1369–1375CrossRefGoogle Scholar
  164. 164.
    Cattaneo E, Rigamonti D, Goffredo D, Zuccato C, Squitieri F, Sipione S (2001) Loss of normal huntingtin function: new developments in Huntington’s disease research. Trends Neurosci 24:182–188PubMedCrossRefGoogle Scholar
  165. 165.
    van Bilsen PH, Jaspers L, Lombardi MS, Odekerken JC, Burright EN, Kaemmerer WF (2008) Identification and allele-specific silencing of the mutant huntingtin allele in Huntington’s disease patient-derived fibroblasts. Hum Gene Ther 19:710–719PubMedCrossRefGoogle Scholar
  166. 166.
    Zhang Y, Engelman J, Friedlander RM (2009) Allele-specific silencing of mutant Huntington’s disease gene. J Neurochem 108:82–90PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Ambrose CM, Duyao MP, Barnes G, Bates GP, Lin CS, Srinidhi J, Baxendale S, Hummerich H, Lehrach H, Altherr M et al (1994) Structure and expression of the Huntington’s disease gene: evidence against simple inactivation due to an expanded CAG repeat. Somat Cell Mol Genet 20:27–38PubMedCrossRefGoogle Scholar
  168. 168.
    Pfister EL, Kennington L, Straubhaar J, Wagh S, Liu W, DiFiglia M, Landwehrmeyer B, Vonsattel JP, Zamore PD, Aronin N (2009) Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington’s disease patients. Curr Biol CB 19:774–778PubMedCrossRefGoogle Scholar
  169. 169.
    Becanovic K, Norremolle A, Neal SJ, Kay C, Collins JA, Arenillas D, Lilja T, Gaudenzi G, Manoharan S, Doty CN, Beck J, Lahiri N, Portales-Casamar E, Warby SC, Connolly C, De Souza RA, REGISTRY Investigators of the European Huntington’s Disease Network, Tabrizi SJ, Hermanson O, Langbehn DR, Hayden MR, Wasserman WW, Leavitt BR (2015) A SNP in the HTT promoter alters NF-kappaB binding and is a bidirectional genetic modifier of Huntington disease. Nat Neurosci 18:807–816PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64–71PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20PubMedCrossRefGoogle Scholar
  172. 172.
    Monteys AM, Wilson MJ, Boudreau RL, Spengler RM, Davidson BL (2015) Artificial miRNAs targeting mutant Huntingtin show preferential silencing in vitro and in vivo. Mol Ther Nucleic Acids 4:e234PubMedCrossRefGoogle Scholar
  173. 173.
    Huang F, Zhang L, Long Z, Chen Z, Hou X, Wang C, Peng H, Wang J, Li J, Duan R, Xia K, Chuang DM, Tang B, Jiang H (2014) MiR-25 alleviates polyQ-mediated cytotoxicity by silencing ATXN3. FEBS Lett 588:4791–4798PubMedCrossRefGoogle Scholar
  174. 174.
    Cheng PH, Li CL, Chang YF, Tsai SJ, Lai YY, Chan AWS, Chen CM, Yang SH (2013) MiR-196a ameliorates phenotypes of huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models. Am J Hum Genet 93:306–312PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Lee Y, Samaco RC, Gatchel JR, Thaller C, Orr HT, Zoghbi HY (2008) miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nat Neurosci 11:1137–1139PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Persengiev S, Kondova I, Otting N, Koeppen AH, Bontrop RE (2011) Genome-wide analysis of miRNA expression reveals a potential role for miR-144 in brain aging and spinocerebellar ataxia pathogenesis. Neurobiol Aging 32:2316.e2317–2327CrossRefGoogle Scholar
  177. 177.
    Tan JY, Vance KW, Varela MA, Sirey T, Watson LM, Curtis HJ, Marinello M, Alves S, Steinkraus BR, Cooper S, Nesterova T, Brockdorff N, Fulga TA, Brice A, Sittler A, Oliver PL, Wood MJ, Ponting CP, Marques AC (2014) Cross-talking noncoding RNAs contribute to cell-specific neurodegeneration in SCA7. Nat Struct Mol Biol 21:955–961PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Miyazaki Y, Adachi H, Katsuno M, Minamiyama M, Jiang Y-M, Huang Z, Doi H, Matsumoto S, Kondo N, Iida M, Tohnai G, Tanaka F, Muramatsu S-I, Sobue G (2012) Viral delivery of miR-196a ameliorates the SBMA phenotype via the silencing of CELF2. Nat Med 18:1136–1141PubMedCrossRefGoogle Scholar
  179. 179.
    Carmona V, Cunha-Santos J, Onofre I, Simoes AT, Vijayakumar U, Davidson BL, Pereira de Almeida L (2017) Unravelling endogenous microrna system dysfunction as a new pathophysiological mechanism in Machado-Joseph disease. Mol Ther: J Am Soc Gene TherPubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 75:280–284PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Monia BP, Lesnik EA, Gonzalez C, Lima WF, McGee D, Guinosso CJ, Kawasaki AM, Cook PD, Freier SM (1993) Evaluation of 2’-modified oligonucleotides containing 2’-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem 268:14514–14522PubMedGoogle Scholar
  182. 182.
    Walder RY, Walder JA (1988) Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proc Natl Acad Sci U S A 85:5011–5015PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Sazani P, Kole R (2003) Therapeutic potential of antisense oligonucleotides as modulators of alternative splicing. J Clin Investig 112:481–486PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Evers MM, Tran HD, Zalachoras I, Pepers BA, Meijer OC, den Dunnen JT, van Ommen GJ, Aartsma-Rus A, van Roon-Mom WM (2013) Ataxin-3 protein modification as a treatment strategy for spinocerebellar ataxia type 3: removal of the CAG containing exon. Neurobiol Dis 58:49–56PubMedCrossRefGoogle Scholar
  185. 185.
    Baker BF, Lot SS, Kringel J, Cheng-Flournoy S, Villiet P, Sasmor HM, Siwkowski AM, Chappell LL, Morrow JR (1999) Oligonucleotide-europium complex conjugate designed to cleave the 5′ cap structure of the ICAM-1 transcript potentiates antisense activity in cells. Nucleic Acids Res 27:1547–1551PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Vickers TA, Wyatt JR, Burckin T, Bennett CF, Freier SM (2001) Fully modified 2′ MOE oligonucleotides redirect polyadenylation. Nucleic Acids Res 29:1293–1299PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Johansson HE, Belsham GJ, Sproat BS, Hentze MW (1994) Target-specific arrest of mRNA translation by antisense 2’-O-alkyloligoribonucleotides. Nucleic Acids Res 22:4591–4598PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Esau CC (2008) Inhibition of microRNA with antisense oligonucleotides. Methods 44:55–60PubMedCrossRefGoogle Scholar
  189. 189.
    Akhtar S, Kole R, Juliano RL (1991) Stability of antisense DNA oligodeoxynucleotide analogs in cellular extracts and sera. Life Sci 49:1793–1801PubMedCrossRefGoogle Scholar
  190. 190.
    Wickstrom E (1986) Oligodeoxynucleotide stability in subcellular extracts and culture media. J Biochem Biophys Methods 13:97–102PubMedCrossRefGoogle Scholar
  191. 191.
    Pulst SM (2016) Degenerative ataxias, from genes to therapies: the 2015 Cotzias Lecture. Neurology 86:2284–2290PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Sahashi K, Katsuno M, Hung G, Adachi H, Kondo N, Nakatsuji H, Tohnai G, Iida M, Bennett CF, Sobue G (2015) Silencing neuronal mutant androgen receptor in a mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet 24:5985–5994PubMedCrossRefGoogle Scholar
  193. 193.
    Lieberman AP, Yu Z, Murray S, Peralta R, Low A, Guo S, Yu XX, Cortes CJ, Bennett CF, Monia BP, La Spada AR, Hung G (2014) Peripheral androgen receptor gene suppression rescues disease in mouse models of spinal and bulbar muscular atrophy. Cell reports 7:774–784PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Toonen LJ, Schmidt I, Luijsterburg MS, van Attikum H, van Roon-Mom WM (2016) Antisense oligonucleotide-mediated exon skipping as a strategy to reduce proteolytic cleavage of ataxin-3. Sci Rep 6:35200PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Moore LR, Rajpal G, Dillingham IT, Qutob M, Blumenstein KG, Gattis D, Hung G, Kordasiewicz HB, Paulson HL, McLoughlin HS (2017) Evaluation of antisense oligonucleotides targeting ATXN3 in SCA3 mouse models. Mol Ther Nucleic Acids 7:200–210PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Evers MM, Pepers BA, van Deutekom JC, Mulders SA, den Dunnen JT, Aartsma-Rus A, van Ommen GJ, van Roon-Mom WM (2011) Targeting several CAG expansion diseases by a single antisense oligonucleotide. PLoS ONE 6:e24308PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Orr HT (2012) Polyglutamine neurodegeneration: expanded glutamines enhance native functions. Curr Opin Genet Dev 22:251–255PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Ferrigno P, Silver PA (2000) Polyglutamine expansions: proteolysis, chaperones, and the dangers of promiscuity. Neuron 26:9–12PubMedCrossRefGoogle Scholar
  199. 199.
    Matos CA, de Almeida LP, Nobrega C (2016) Proteolytic cleavage of polyglutamine disease-causing proteins: revisiting the toxic fragment hypothesis. Curr Pharm DesGoogle Scholar
  200. 200.
    Tarlac V, Storey E (2003) Role of proteolysis in polyglutamine disorders. J Neurosci Res 74:406–416PubMedCrossRefGoogle Scholar
  201. 201.
    Walsh R, Storey E, Stefani D, Kelly L, Turnbull V (2005) The roles of proteolysis and nuclear localisation in the toxicity of the polyglutamine diseases. A Rev Neurotox Res 7:43–57CrossRefGoogle Scholar
  202. 202.
    Weber JJ, Sowa AS, Binder T, Hubener J (2014) From pathways to targets: understanding the mechanisms behind polyglutamine disease. Biomed Res Int 2014:701758PubMedPubMedCentralGoogle Scholar
  203. 203.
    Gafni J, Ellerby LM (2002) Calpain activation in Huntington’s disease. J Neurosci 22:4842–4849PubMedCrossRefGoogle Scholar
  204. 204.
    Goffredo D, Rigamonti D, Tartari M, De Micheli A, Verderio C, Matteoli M, Zuccato C, Cattaneo E (2002) Calcium-dependent cleavage of endogenous wild-type huntingtin in primary cortical neurons. J Biol Chem 277:39594–39598PubMedCrossRefGoogle Scholar
  205. 205.
    Kim YJ, Yi Y, Sapp E, Wang Y, Cuiffo B, Kegel KB, Qin ZH, Aronin N, DiFiglia M (2001) Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington’s disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc Natl Acad Sci U S A 98:12784–12789PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Haacke A, Hartl FU, Breuer P (2007) Calpain inhibition is sufficient to suppress aggregation of polyglutamine-expanded ataxin-3. J Biol Chem 282:18851–18856PubMedCrossRefGoogle Scholar
  207. 207.
    Takahashi T, Katada S, Onodera O (2010) Polyglutamine diseases: where does toxicity come from? what is toxicity? where are we going? J Mol Cell Biol 2:180–191PubMedCrossRefGoogle Scholar
  208. 208.
    Todd TW, Lim J (2013) Aggregation formation in the polyglutamine diseases: protection at a cost? Mol Cells 36:185–194PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Williams AJ, Paulson HL (2008) Polyglutamine neurodegeneration: protein misfolding revisited. Trends Neurosci 31:521–528PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Robertson AL, Bottomley SP (2010) Towards the treatment of polyglutamine diseases: the modulatory role of protein context. Curr Med Chem 17:3058–3068PubMedCrossRefGoogle Scholar
  211. 211.
    Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Muchowski PJ, Schaffar G, Sittler A, Wanker EE, Hayer-Hartl MK, Hartl FU (2000) Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc Natl Acad Sci U S A 97:7841–7846PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Wacker JL, Zareie MH, Fong H, Sarikaya M, Muchowski PJ (2004) Hsp70 and Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer. Nat Struct Mol Biol 11:1215–1222PubMedCrossRefGoogle Scholar
  214. 214.
    Chai Y, Koppenhafer SL, Bonini NM, Paulson HL (1999) Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J Neurosci 19:10338–10347PubMedCrossRefGoogle Scholar
  215. 215.
    Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19:148–154PubMedCrossRefGoogle Scholar
  216. 216.
    Ishihara K, Yamagishi N, Saito Y, Adachi H, Kobayashi Y, Sobue G, Ohtsuka K, Hatayama T (2003) Hsp105alpha suppresses the aggregation of truncated androgen receptor with expanded CAG repeats and cell toxicity. J Biol Chem 278:25143–25150PubMedCrossRefGoogle Scholar
  217. 217.
    Jana NR, Tanaka M, Wang G, Nukina N (2000) Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum Mol Genet 9:2009–2018PubMedCrossRefGoogle Scholar
  218. 218.
    Mitsui K, Nakayama H, Akagi T, Nekooki M, Ohtawa K, Takio K, Hashikawa T, Nukina N (2002) Purification of polyglutamine aggregates and identification of elongation factor-1alpha and heat shock protein 84 as aggregate-interacting proteins. J Neurosci 22:9267–9277PubMedGoogle Scholar
  219. 219.
    Perrin V, Regulier E, Abbas-Terki T, Hassig R, Brouillet E, Aebischer P, Luthi-Carter R, Deglon N (2007) Neuroprotection by Hsp104 and Hsp27 in lentiviral-based rat models of Huntington’s disease. Mol Ther J Am Soc Gene Ther 15:903–911CrossRefGoogle Scholar
  220. 220.
    Schmidt T, Lindenberg KS, Krebs A, Schols L, Laccone F, Herms J, Rechsteiner M, Riess O, Landwehrmeyer GB (2002) Protein surveillance machinery in brains with spinocerebellar ataxia type 3: redistribution and differential recruitment of 26S proteasome subunits and chaperones to neuronal intranuclear inclusions. Ann Neurol 51:302–310PubMedCrossRefGoogle Scholar
  221. 221.
    Stenoien DL, Cummings CJ, Adams HP, Mancini MG, Patel K, DeMartino GN, Marcelli M, Weigel NL, Mancini MA (1999) Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum Mol Genet 8:731–741PubMedCrossRefGoogle Scholar
  222. 222.
    Carmichael J, Chatellier J, Woolfson A, Milstein C, Fersht AR, Rubinsztein DC (2000) Bacterial and yeast chaperones reduce both aggregate formation and cell death in mammalian cell models of Huntington’s disease. Proc Natl Acad Sci U S A 97:9701–9705PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Carra S, Sivilotti M, Chavez Zobel AT, Lambert H, Landry J (2005) HspB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells. Hum Mol Genet 14:1659–1669PubMedCrossRefGoogle Scholar
  224. 224.
    Kitamura A, Kubota H, Pack CG, Matsumoto G, Hirayama S, Takahashi Y, Kimura H, Kinjo M, Morimoto RI, Nagata K (2006) Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state. Nat Cell Biol 8:1163–1170PubMedCrossRefGoogle Scholar
  225. 225.
    Tam S, Geller R, Spiess C, Frydman J (2006) The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat Cell Biol 8:1155–1162PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Wyttenbach A, Sauvageot O, Carmichael J, Diaz-Latoud C, Arrigo AP, Rubinsztein DC (2002) Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 11:1137–1151PubMedCrossRefGoogle Scholar
  227. 227.
    Zhou H, Li SH, Li XJ (2001) Chaperone suppression of cellular toxicity of huntingtin is independent of polyglutamine aggregation. J Biol Chem 276:48417–48424PubMedCrossRefGoogle Scholar
  228. 228.
    Bailey CK, Andriola IF, Kampinga HH, Merry DE (2002) Molecular chaperones enhance the degradation of expanded polyglutamine repeat androgen receptor in a cellular model of spinal and bulbar muscular atrophy. Hum Mol Genet 11:515–523PubMedCrossRefGoogle Scholar
  229. 229.
    Howarth JL, Kelly S, Keasey MP, Glover CP, Lee YB, Mitrophanous K, Chapple JP, Gallo JM, Cheetham ME, Uney JB (2007) Hsp40 molecules that target to the ubiquitin-proteasome system decrease inclusion formation in models of polyglutamine disease. Mol Ther J Am Soc Gene Ther 15:1100–1105CrossRefGoogle Scholar
  230. 230.
    Kobayashi Y, Kume A, Li M, Doyu M, Hata M, Ohtsuka K, Sobue G (2000) Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J Biol Chem 275:8772–8778PubMedCrossRefGoogle Scholar
  231. 231.
    Branco J, Al-Ramahi I, Ukani L, Perez AM, Fernandez-Funez P, Rincon-Limas D, Botas J (2008) Comparative analysis of genetic modifiers in Drosophila points to common and distinct mechanisms of pathogenesis among polyglutamine diseases. Hum Mol Genet 17:376–390PubMedCrossRefGoogle Scholar
  232. 232.
    Kazemi-Esfarjani P, Benzer S (2000) Genetic suppression of polyglutamine toxicity in Drosophila. Science 287:1837–1840PubMedCrossRefGoogle Scholar
  233. 233.
    Bilen J, Bonini NM (2007) Genome-wide screen for modifiers of ataxin-3 neurodegeneration in Drosophila. PLoS Genet 3:1950–1964PubMedCrossRefGoogle Scholar
  234. 234.
    Warrick JM, Chan HY, Gray-Board GL, Chai Y, Paulson HL, Bonini NM (1999) Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 23:425–428PubMedCrossRefGoogle Scholar
  235. 235.
    Vacher C, Garcia-Oroz L, Rubinsztein DC (2005) Overexpression of yeast hsp104 reduces polyglutamine aggregation and prolongs survival of a transgenic mouse model of Huntington’s disease. Hum Mol Genet 14:3425–3433PubMedCrossRefGoogle Scholar
  236. 236.
    Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, Dillmann WH, Zoghbi HY (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 10:1511–1518PubMedCrossRefGoogle Scholar
  237. 237.
    Adachi H, Katsuno M, Minamiyama M, Sang C, Pagoulatos G, Angelidis C, Kusakabe M, Yoshiki A, Kobayashi Y, Doyu M, Sobue G (2003) Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein. J Neurosci 23:2203–2211PubMedGoogle Scholar
  238. 238.
    Kondo N, Katsuno M, Adachi H, Minamiyama M, Doi H, Matsumoto S, Miyazaki Y, Iida M, Tohnai G, Nakatsuji H, Ishigaki S, Fujioka Y, Watanabe H, Tanaka F, Nakai A, Sobue G (2013) Heat shock factor-1 influences pathological lesion distribution of polyglutamine-induced neurodegeneration. Nat Commun 4:1405PubMedCrossRefGoogle Scholar
  239. 239.
    Banerjee R, Beal MF, Thomas B (2010) Autophagy in neurodegenerative disorders: pathogenic roles and therapeutic implications. Trends Neurosci 33:541–549PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Jimenez-Sanchez M, Thomson F, Zavodszky E, Rubinsztein DC (2012) Autophagy and polyglutamine diseases. Prog Neurobiol 97:67–82PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Williams A, Jahreiss L, Sarkar S, Saiki S, Menzies FM, Ravikumar B, Rubinsztein DC (2006) Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr Top Dev Biol 76:89–101PubMedCrossRefGoogle Scholar
  242. 242.
    Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W, Moghadam AR, Kashani HH, Hashemi M, Owji AA, Los MJ (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 112:24–49PubMedCrossRefGoogle Scholar
  243. 243.
    Harris H, Rubinsztein DC (2012) Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol 8:108–117CrossRefGoogle Scholar
  244. 244.
    Sarkar S, Rubinsztein DC (2008) Huntington’s disease: degradation of mutant huntingtin by autophagy. FEBS J 275:4263–4270PubMedCrossRefGoogle Scholar
  245. 245.
    Ravikumar B, Imarisio S, Sarkar S, O’Kane CJ, Rubinsztein DC (2008) Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci 121:1649–1660PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, Padmanabhan R, Hild M, Berry DL, Garza D, Hubbert CC, Yao TP, Baehrecke EH, Taylor JP (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447:859–863PubMedCrossRefGoogle Scholar
  247. 247.
    del Cano-Espinel M, Acebes JR, Sanchez D, Ganfornina MD (2015) Lazarillo-related Lipocalins confer long-term protection against type I Spinocerebellar Ataxia degeneration contributing to optimize selective autophagy. Mol Neurodegeneration 10:11CrossRefGoogle Scholar
  248. 248.
    Doi H, Adachi H, Katsuno M, Minamiyama M, Matsumoto S, Kondo N, Miyazaki Y, Iida M, Tohnai G, Qiang Q, Tanaka F, Yanagawa T, Warabi E, Ishii T, Sobue G (2013) p62/SQSTM1 differentially removes the toxic mutant androgen receptor via autophagy and inclusion formation in a spinal and bulbar muscular atrophy mouse model. J Neurosci 33:7710–7727PubMedCrossRefGoogle Scholar
  249. 249.
    Chang YC, Lin CW, Hsu CM, Lee-Chen GJ, Su MT, Ro LS, Chen CM, Huang HJ, Hsieh-Li HM (2016) Targeting the prodromal stage of spinocerebellar ataxia type 17 mice: G-CSF in the prevention of motor deficits via upregulating chaperone and autophagy levels. Brain Res 1639:132–148PubMedCrossRefGoogle Scholar
  250. 250.
    Bauer PO, Goswami A, Wong HK, Okuno M, Kurosawa M, Yamada M, Miyazaki H, Matsumoto G, Kino Y, Nagai Y, Nukina N (2010) Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nat Biotechnol 28:256–263PubMedCrossRefGoogle Scholar
  251. 251.
    Shibata M, Lu T, Furuya T, Degterev A, Mizushima N, Yoshimori T, MacDonald M, Yankner B, Yuan J (2006) Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J Biol Chem 281:14474–14485PubMedCrossRefGoogle Scholar
  252. 252.
    Cunha-Santos J, Duarte-Neves J, Carmona V, Guarente L, Pereira de Almeida L, Cavadas C (2016) Caloric restriction blocks neuropathology and motor deficits in Machado-Joseph disease mouse models through SIRT1 pathway. Nat Commun 7:11445PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Alves S, Cormier-Dequaire F, Marinello M, Marais T, Muriel MP, Beaumatin F, Charbonnier-Beaupel F, Tahiri K, Seilhean D, El Hachimi K, Ruberg M, Stevanin G, Barkats M, den Dunnen W, Priault M, Brice A, Durr A, Corvol JC, Sittler A (2014) The autophagy/lysosome pathway is impaired in SCA7 patients and SCA7 knock-in mice. Acta Neuropathol 128:705–722PubMedCrossRefGoogle Scholar
  254. 254.
    Vig PJ, Shao Q, Subramony SH, Lopez ME, Safaya E (2009) Bergmann glial S100B activates myo-inositol monophosphatase 1 and Co-localizes to purkinje cell vacuoles in SCA1 transgenic mice. Cerebellum 8:231–244PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Li X, Liu H, Fischhaber PL, Tang TS (2015) Toward therapeutic targets for SCA3: Insight into the role of Machado-Joseph disease protein ataxin-3 in misfolded proteins clearance. Prog Neurobiol 132:34–58PubMedCrossRefGoogle Scholar
  256. 256.
    Seo H, Sonntag KC, Kim W, Cattaneo E, Isacson O (2007) Proteasome activator enhances survival of Huntington’s disease neuronal model cells. PLoS ONE 2:e238PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Jana NR, Dikshit P, Goswami A, Kotliarova S, Murata S, Tanaka K, Nukina N (2005) Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J Biol Chem 280:11635–11640PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Matsumoto M, Yada M, Hatakeyama S, Ishimoto H, Tanimura T, Tsuji S, Kakizuka A, Kitagawa M, Nakayama KI (2004) Molecular clearance of ataxin-3 is regulated by a mammalian E4. EMBO J 23:659–669PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Miller VM, Nelson RF, Gouvion CM, Williams A, Rodriguez-Lebron E, Harper SQ, Davidson BL, Rebagliati MR, Paulson HL (2005) CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. J Neurosci 25:9152–9161PubMedCrossRefGoogle Scholar
  260. 260.
    Sugiura A, Yonashiro R, Fukuda T, Matsushita N, Nagashima S, Inatome R, Yanagi S (2010) A mitochondrial ubiquitin ligase MITOL controls cell toxicity of polyglutamine-expanded protein. Mitochondrion 11:139–146PubMedCrossRefGoogle Scholar
  261. 261.
    Tsai YC, Fishman PS, Thakor NV, Oyler GA (2003) Parkin facilitates the elimination of expanded polyglutamine proteins and leads to preservation of proteasome function. J Biol Chem 278:22044–22055PubMedCrossRefGoogle Scholar
  262. 262.
    Palazzolo I, Burnett BG, Young JE, Brenne PL, La Spada AR, Fischbeck KH, Howell BW, Pennuto M (2007) Akt blocks ligand binding and protects against expanded polyglutamine androgen receptor toxicity. Hum Mol Genet 16:1593–1603PubMedCrossRefGoogle Scholar
  263. 263.
    Palazzolo I, Stack C, Kong L, Musaro A, Adachi H, Katsuno M, Sobue G, Taylor JP, Sumner CJ, Fischbeck KH, Pennuto M (2009) Overexpression of IGF-1 in muscle attenuates disease in a mouse model of spinal and bulbar muscular atrophy. Neuron 63:316–328PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Alberch J, Perez-Navarro E, Canals JM (2004) Neurotrophic factors in Huntington’s disease. Prog Brain Res 146:195–229PubMedGoogle Scholar
  265. 265.
    Demeestere J, Vandenberghe W (2011) Experimental surgical therapies for Huntington’s disease. CNS Neurosci Ther 17:705–713PubMedCrossRefGoogle Scholar
  266. 266.
    Ramaswamy S, McBride JL, Han I, Berry-Kravis EM, Zhou L, Herzog CD, Gasmi M, Bartus RT, Kordower JH (2009) Intrastriatal CERE-120 (AAV-Neurturin) protects striatal and cortical neurons and delays motor deficits in a transgenic mouse model of Huntington’s disease. Neurobiol Dis 34:40–50PubMedCrossRefGoogle Scholar
  267. 267.
    An MC, Zhang N, Scott G, Montoro D, Wittkop T, Mooney S, Melov S, Ellerby LM (2012) Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 11:253–263PubMedPubMedCentralCrossRefGoogle Scholar
  268. 268.
    Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Cox DB, Platt RJ, Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21:121–131PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Richard GF, Dujon B, Haber JE (1999) Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats. Mol Gen Genet MGG 261:871–882PubMedCrossRefGoogle Scholar
  271. 271.
    Richard GF, Viterbo D, Khanna V, Mosbach V, Castelain L, Dujon B (2014) Highly specific contractions of a single CAG/CTG trinucleotide repeat by TALEN in yeast. PLoS ONE 9:e95611PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Mittelman D, Moye C, Morton J, Sykoudis K, Lin Y, Carroll D, Wilson JH (2009) Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells. Proc Natl Acad Sci U S A 106:9607–9612PubMedPubMedCentralCrossRefGoogle Scholar
  273. 273.
    Huang W, Zheng J, He Y, Luo C (2013) Tandem repeat modification during double-strand break repair induced by an engineered TAL effector nuclease in zebrafish genome. PLoS ONE 8:e84176PubMedPubMedCentralCrossRefGoogle Scholar
  274. 274.
    Stoddard BL (2011) Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19:7–15PubMedPubMedCentralCrossRefGoogle Scholar
  275. 275.
    Puchta H, Fauser F (2014) Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J Cell Mol Biol 78:727–741CrossRefGoogle Scholar
  276. 276.
    Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646PubMedCrossRefGoogle Scholar
  277. 277.
    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308PubMedPubMedCentralCrossRefGoogle Scholar
  278. 278.
    Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355PubMedPubMedCentralCrossRefGoogle Scholar
  279. 279.
    Garriga-Canut M, Agustin-Pavon C, Herrmann F, Sanchez A, Dierssen M, Fillat C, Isalan M (2012) Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc Natl Acad Sci U S A 109:E3136–E3145PubMedPubMedCentralCrossRefGoogle Scholar
  280. 280.
    Fink KD, Deng P, Gutierrez J, Anderson JS, Torrest A, Komarla A, Kalomoiris S, Cary W, Anderson JD, Gruenloh W, Duffy A, Tempkin T, Annett G, Wheelock V, Segal DJ, Nolta JA (2016) Allele-specific reduction of the mutant Huntingtin Allele using transcription activator-like effectors in human Huntington’s disease fibroblasts. Cell Transplant 25:677–686PubMedCrossRefGoogle Scholar
  281. 281.
    Shin JW, Kim KH, Chao MJ, Atwal RS, Gillis T, MacDonald ME, Gusella JF, Lee JM (2016) Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Human Mol GenetGoogle Scholar
  282. 282.
    Rodriguez-Lebron E, Liu G, Keiser M, Behlke MA, Davidson BL (2013) Altered Purkinje cell miRNA expression and SCA1 pathogenesis. Neurobiol Dis 54:456–463PubMedPubMedCentralCrossRefGoogle Scholar
  283. 283.
    Stanek LM, Yang W, Angus S, Sardi PS, Hayden MR, Hung GH, Bennett CF, Cheng SH, Shihabuddin LS (2013) Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington’s disease. J Huntington’s Dis 2:217–228Google Scholar
  284. 284.
    Southwell AL, Skotte NH, Kordasiewicz HB, Ostergaard ME, Watt AT, Carroll JB, Doty CN, Villanueva EB, Petoukhov E, Vaid K, Xie Y, Freier SM, Swayze EE, Seth PP, Bennett CF, Hayden MR (2014) In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides. Mol Ther J Am Soc Gene Ther 22:2093–2106CrossRefGoogle Scholar
  285. 285.
    Sun X, Marque LO, Cordner Z, Pruitt JL, Bhat M, Li PP, Kannan G, Ladenheim EE, Moran TH, Margolis RL, Rudnicki DD (2014) Phosphorodiamidate morpholino oligomers suppress mutant huntingtin expression and attenuate neurotoxicity. Hum Mol Genet 23:6302–6317PubMedPubMedCentralCrossRefGoogle Scholar
  286. 286.
    Evers MM, Tran HD, Zalachoras I, Meijer OC, den Dunnen JT, van Ommen GJ, Aartsma-Rus A, van Roon-Mom WM (2014) Preventing formation of toxic N-terminal huntingtin fragments through antisense oligonucleotide-mediated protein modification. Nucleic acid Ther 24:4–12PubMedCrossRefGoogle Scholar
  287. 287.
    Toonen LJA, Rigo F, van Attikum H, van Roon-Mom WMC (2017) Antisense oligonucleotide-mediated removal of the polyglutamine repeat in spinocerebellar ataxia type 3 mice. Mol Ther Nucleic Acids 8:232–242PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Carlos A. Matos
    • 1
    • 2
  • Vítor Carmona
    • 1
    • 3
  • Udaya-Geetha Vijayakumar
    • 1
  • Sara Lopes
    • 1
    • 2
  • Patrícia Albuquerque
    • 1
    • 3
  • Mariana Conceição
    • 1
  • Rui Jorge Nobre
    • 1
    • 2
  • Clévio Nóbrega
    • 1
    • 4
    • 5
    • 6
  • Luís Pereira de Almeida
    • 1
    • 3
  1. 1.CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
  2. 2.Institute for Interdisciplinary ResearchUniversity of CoimbraCoimbraPortugal
  3. 3.Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
  4. 4.Department of Biomedical Sciences and MedicineUniversity of AlgarveFaroPortugal
  5. 5.Centre for Biomedical ResearchUniversity of AlgarveFaroPortugal
  6. 6.Algarve Biomedical CenterUniversity of AlgarveFaroPortugal

Personalised recommendations