Advertisement

Towards the Identification of Molecular Biomarkers of Spinocerebellar Ataxia Type 3 (SCA3)/Machado-Joseph Disease (MJD)

  • Manuela Lima
  • Mafalda Raposo
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1049)

Abstract

Whereas spinocerebellar ataxia type 3 (SCA3)/Machado-Joseph disease (MJD) remains an untreatable disorder, disease-modifying compounds have begun being tested in the context of clinical trials; their success is dependent on the sensitivity of the methods used to measure subtle therapeutic benefits. Thus, efforts are being made to propose a battery of potential outcome measures, including molecular biomarkers (MBs), which remain to be identified; MBs are particularly pertinent if SCA3 trials are expected to enroll preataxic subjects. Recently, promising candidate MBs of SCA3 have emerged from gene expression studies. In this chapter we provide a synthesis of the cross-sectional and pilot longitudinal studies of blood-based transcriptional biomarkers conducted so far. Other alterations with potential to track the progression of SCA3, such as those involving mitochondrial DNA (mtDNA) are also referred. It is expected that a set of molecular biomarkers can be identified; these will be used in complementarity with clinical and imaging markers to fully track SCA3, from its preataxic phase to the disease stage.

Keywords

Polyglutamine disorders Biochemical markers Transcriptional dysregulation RNA Trait biomarkers State biomarkers 

References

  1. 1.
    Ruano L, Melo C, Silva MC, Coutinho P (2014) The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42(3):174–183CrossRefGoogle Scholar
  2. 2.
    Lima M, Bruges-Armas J, Bettencourt C (2012) Non-mendelian genetic aspects in spinocerebellar ataxias (scas): the case of Machado-Joseph disease (MJD). Spinocerebellar Ataxia, InTechGoogle Scholar
  3. 3.
    Coutinho P (1992) Doença de Machado-Joseph: Tentativa de definição. PhD dissertation, Universidade do PortoGoogle Scholar
  4. 4.
    Lima M, Mayer F, Coutinho P, Abade A (1997) Prevalence, geographic distribution, and genealogical investigation of Machado-Joseph disease in the Azores (Portugal). Hum Biol 69(3):383–391PubMedGoogle Scholar
  5. 5.
    Lima M, Mayer FM, Coutinho P, Abade A (1998) Origins of a mutation: population genetics of Machado-Joseph disease in the Azores (Portugal). Hum Biol Int Rec Res 70(6):1011–1023Google Scholar
  6. 6.
    Raposo M, Bettencourt C, Maciel P, Gao F, Ramos A et al (2015) Novel candidate blood-based transcriptional biomarkers of Machado-Joseph disease. Mov Disord 30(7):968–975CrossRefGoogle Scholar
  7. 7.
    de Araújo M, Raposo M, Kazachkova N, Vasconcelos J, Kay T, Lima M (2016) Trends in the epidemiology of spinocerebellar ataxia type 3/Machado-Joseph disease in the Azores Islands, Portugal. JSM Brain Sci 1(1):1001Google Scholar
  8. 8.
    Bettencourt C, Lima M (2011) Machado-Joseph disease: from first descriptions to new perspectives. Orphanet J Rare Dis 6:35CrossRefGoogle Scholar
  9. 9.
    Bettencourt C, Raposo M, Kazachkova N, Cymbron T, Santos C et al (2011) The APOE ε2 allele increases the risk of earlier age at onset in Machado-Joseph disease. Arch Neurol 68(12):1580–1583CrossRefGoogle Scholar
  10. 10.
    Sequeiros J, Coutinho P (1993) Epidemiology and clinical aspects of Machado-Joseph disease. Adv Neurol 61:139–153PubMedGoogle Scholar
  11. 11.
    Bettencourt C, Santos C, Kay T, Vasconcelos J, Lima M (2008) Analysis of segregation patterns in Machado-Joseph disease pedigrees. J Hum Genet 53(10):920–923CrossRefGoogle Scholar
  12. 12.
    Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M et al (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 8(3):221–228CrossRefGoogle Scholar
  13. 13.
    Maciel P, Costa MC, Ferro A, Rousseau M, Santos CS et al (2001) Improvement in the molecular diagnosis of Machado-Joseph disease. Arch Neurol 58(11):1821–1827CrossRefGoogle Scholar
  14. 14.
    Souza GN, Kersting N, Krum-Santos AC, Santos ASP, Furtado GV et al (2016) Spinocerebellar ataxia type 3/Machado-Joseph disease: segregation patterns and factors influencing instability of expanded CAG transmissions. Clin Genet 90(2):134–140CrossRefGoogle Scholar
  15. 15.
    Evers MM, Toonen LJA, van Roon-Mom WMC (2014) Ataxin-3 protein and RNA toxicity in spinocerebellar ataxia type 3: current insights and emerging therapeutic strategies. Mol Neurobiol 49(3):1513–1531PubMedGoogle Scholar
  16. 16.
    do Costa MC, Paulson HL (2012) Toward understanding Machado-Joseph disease. Prog Neurobiol 97(2):239–257CrossRefGoogle Scholar
  17. 17.
    Kazachkova N, Lima M (2015) Towards a therapeutic intervention in polyglutamine ataxias: from models to clinical trials. In: Atta-ur-Rahman (ed) Frontiers in clinical drug research -CNS and neurological disorders, pp. 77–130Google Scholar
  18. 18.
    Saute JAM, Rieder CRM, Castilhos RM, Monte TL, Schumacher-Schuh AF et al (2015) Planning future clinical trials in Machado Joseph disease: lessons from a phase 2 trial. J Neurol Sci 358(1–2):72–76CrossRefGoogle Scholar
  19. 19.
    Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95CrossRefGoogle Scholar
  20. 20.
    Weir DW, Sturrock A, Leavitt BR (2011) Development of biomarkers for Huntington’s disease. Lancet Neurol 10(6):573–590CrossRefGoogle Scholar
  21. 21.
    Raposo M, Ramos A, Bettencourt C, Lima M (2015) Replicating studies of genetic modifiers in spinocerebellar ataxia type 3: can homogeneous cohorts aid? Brain 138(Pt 12):e398CrossRefGoogle Scholar
  22. 22.
    Jardim L, Silveira I, do Pereira ML, Céu Moreira M, Mendonça P et al (2003) Searching for modulating effects of SCA2, SCA6 and DRPLA CAG tracts on the Machado-Joseph disease (SCA3) phenotype. Acta Neurol Scand 107(3):211–214CrossRefGoogle Scholar
  23. 23.
    Tezenas du Montcel S, Durr A, Bauer P, Figueroa K, Ichikawa Y et al (2014) Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes. Brain 137(Pt 9):2444–2455CrossRefGoogle Scholar
  24. 24.
    Raposo M, Bettencourt C, Ramos A, Kazachkova N, Vasconcelos J et al (2016) Promoter variation and expression levels of inflammatory genes IL1A, IL1B, IL6 and TNF in blood of spinocerebellar ataxia type 3 (SCA3) patients. Neuromolecular Med 19(1):41–45CrossRefGoogle Scholar
  25. 25.
    Bettencourt C, Santos C, Coutinho P, Rizzu P, Vasconcelos J et al (2011) Parkinsonian phenotype in Machado-Joseph disease (MJD/SCA3): a two-case report. BMC Neurol 11:131CrossRefGoogle Scholar
  26. 26.
    Peng H, Wang C, Chen Z, Sun Z, Jiao B et al (2014) APOE ε2 allele may decrease the age at onset in patients with spinocerebellar ataxia type 3 or Machado-Joseph disease from the Chinese Han population. Neurobiol Aging 35(9):2179.e15–2179.e18CrossRefGoogle Scholar
  27. 27.
    Siebert M, Donis KC, Socal M, Rieder C, Emmel VE et al (2012) Glucocerebrosidase gene variants in parkinsonian patients with Machado Joseph/spinocerebellar ataxia 3. Park Relat Disord 18(2):185–190CrossRefGoogle Scholar
  28. 28.
    Long Z, Chen Z, Wang C, Huang F, Peng H et al (2015) Two novel SNPs in ATXN3 3’ UTR may decrease age at onset of SCA3/MJD in Chinese patients. PLoS One 10(2):e0117488CrossRefGoogle Scholar
  29. 29.
    França MC, Emmel VE, D’Abreu A, Maurer-Morelli CV, Secolin R et al (2012) Normal ATXN3 allele but not CHIP polymorphisms modulates age at onset in Machado-Joseph disease. Front Neurol 3:164CrossRefGoogle Scholar
  30. 30.
    Gusella JF, MacDonald ME (2009) Huntington’s disease: the case for genetic modifiers. Genome Med 1(8):80CrossRefGoogle Scholar
  31. 31.
    Chai Y, Wu L, Griffin JD, Paulson HL (2001) The role of protein composition in specifying nuclear inclusion formation in polyglutamine disease. J Biol Chem 276(48):44889–44897CrossRefGoogle Scholar
  32. 32.
    Perez MK, Paulson HL, Pendse SJ, Saionz SJ, Bonini NM, Pittman RN (1998) Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J Cell Biol 143(6):1457–1470CrossRefGoogle Scholar
  33. 33.
    Takahashi J, Tanaka J, Arai K, Funata N, Hattori T et al (2001) Recruitment of nonexpanded polyglutamine proteins to intranuclear aggregates in neuronal intranuclear hyaline inclusion disease. J Neuropathol Exp Neurol 60(4):369–376CrossRefGoogle Scholar
  34. 34.
    Evert BO, Araujo J, Vieira-Saecker AM, de Vos RAI, Harendza S et al (2006) Ataxin-3 represses transcription via chromatin binding, interaction with histone deacetylase 3, and histone deacetylation. J Neurosci 26(44):11474–11486CrossRefGoogle Scholar
  35. 35.
    Evert BO, Vogt IR, Vieira-Saecker AM, Ozimek L, de Vos RAI et al (2003) Gene expression profiling in ataxin-3 expressing cell lines reveals distinct effects of normal and mutant ataxin-3. J Neuropathol Exp Neurol 62(10):1006–1018CrossRefGoogle Scholar
  36. 36.
    Li F, Macfarlan T, Pittman RN, Chakravarti D (2002) Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities. J Biol Chem 277(47):45004–45012CrossRefGoogle Scholar
  37. 37.
    Nicastro G, Menon RP, Masino L, Knowles PP, McDonald NQ, Pastore A (2005) The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition. Proc Natl Acad Sci USA 102(30):10493–10498CrossRefGoogle Scholar
  38. 38.
    Rodrigues A-J, Coppola G, Santos C, do Costa MC, Ailion M et al (2007) Functional genomics and biochemical characterization of the C. elegans orthologue of the Machado-Joseph disease protein ataxin-3. FASEB J. 21(4):1126–1136CrossRefGoogle Scholar
  39. 39.
    Chou A-H, Yeh T-H, Ouyang P, Chen Y-L, Chen S-Y, Wang H-L (2008) Polyglutamine-expanded ataxin-3 causes cerebellar dysfunction of SCA3 transgenic mice by inducing transcriptional dysregulation. Neurobiol Dis 31(1):89–101CrossRefGoogle Scholar
  40. 40.
    Evert BO, Vogt IR, Kindermann C, Ozimek L, de Vos RA et al (2001) Inflammatory genes are upregulated in expanded ataxin-3-expressing cell lines and spinocerebellar ataxia type 3 brains. J Neurosci 21(15):5389–5396CrossRefGoogle Scholar
  41. 41.
    Raposo M (2017) Predicting and tracking Machado-Joseph disease: biomarkers of diagnosis and prognosis. PhD dissertation, Universidade dos AçoresGoogle Scholar
  42. 42.
    Matsuishi T, Sakai T, Nagamitsu S, Shoji H, Ueda N et al (1996) Decreased cerebrospinal fluid levels of substance P in Machado-Joseph disease. J Neurol Sci 142(1–2):107–110CrossRefGoogle Scholar
  43. 43.
    Pacheco LS, da Silveira AF, Trott A, Houenou LJ, Algarve TD et al (2013) Association between Machado-Joseph disease and oxidative stress biomarkers. Mutat Res 757(2):99–103CrossRefGoogle Scholar
  44. 44.
    Yu Y-C, Kuo C-L, Cheng W-L, Liu C-S, Hsieh M (2009) Decreased antioxidant enzyme activity and increased mitochondrial DNA damage in cellular models of Machado-Joseph disease. J Neurosci Res 87(8):1884–1891CrossRefGoogle Scholar
  45. 45.
    Kazachkova N, Raposo M, Montiel R, Cymbron T, Bettencourt C et al (2013) Patterns of mitochondrial DNA damage in blood and brain tissues of a transgenic mouse model of Machado-Joseph disease. Neurodegener Dis 11(4):206–214CrossRefGoogle Scholar
  46. 46.
    Liu C-S, Cheng W-L, Kuo S-J, Li J-Y, Soong B-W, Wei Y-H (2008) Depletion of mitochondrial DNA in leukocytes of patients with poly-Q diseases. J Neurol Sci 264(1–2):18–21CrossRefGoogle Scholar
  47. 47.
    Ramos A, Kazachkova N, Silva F, Maciel P, Silva-Fernandes A et al (2015) Differential mtDNA damage patterns in a transgenic mouse model of Machado-Joseph disease (MJD/SCA3). J Mol Neurosci 55(2):449–453CrossRefGoogle Scholar
  48. 48.
    Zeng A, Liu X, Shen L, Li W, Ding Z et al (2012) Analysis of mitochondrial DNA variations in a Chinese family with spinocerebellar ataxia. J Clin Neurosci 19(1):60–64CrossRefGoogle Scholar
  49. 49.
    Raposo M, Ramos A, Kazachkova N, Teixeira B, Bettencourt C, Lima M (submitted) Accumulation of mitochondrial DNA common deletion since the preataxic stage of Machado-Joseph diseaseGoogle Scholar
  50. 50.
    Kazachkova N, Raposo M, Ramos A, Montiel R, Lima M (2017) Promoter variant alters expression of the Autophagic BECN1 gene: implications for clinical manifestations of Machado-Joseph disease. The CerebellumGoogle Scholar
  51. 51.
    Cunha-Santos J, Duarte-Neves J, Carmona V, Guarente L, Pereira de Almeida L, Cavadas C (2016) Caloric restriction blocks neuropathology and motor deficits in Machado-Joseph disease mouse models through SIRT1 pathway. Nat Commun 11(7):11445CrossRefGoogle Scholar
  52. 52.
    da Silva Carvalho G, Saute JAM, Haas CB, Torrez VR, Brochier AW, Souza GN, Furtado GV, Gheno T, Russo A, Monte TL, Schumacher-Schuh A, D’Avila R, Donis KC, Castilhos RM, Souza DO, Saraiva-Pereira ML, Torman VL, Camey S, Portela LV, Jardim LB (2016) Cytokines in Machado Joseph disease/Spinocerebellar Ataxia 3. The Cerebellum 15(4):518–525Google Scholar
  53. 53.
    Saute JAM, da Silva ACF, Muller AP, Hansel G, de Mello AS, Maeda F, Vedolin L, Saraiva-Pereira ML, Souza DO, Arpa J, Torres-Aleman I, Portela LVC, Jardim LB (2011) Serum insulin-like system alterations in patients with Spinocerebellar Ataxia type 3. Mov Disord 26(4):731–735CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Departamento de Biologia, Faculdade de Ciências e TecnologiaUniversidade dos AçoresPonta DelgadaPortugal
  2. 2.Instituto de Investigação e Inovação em Saúde (I3S)Universidade do PortoPortoPortugal
  3. 3.Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortoPortugal

Personalised recommendations