Polyglutamine-Independent Features in Ataxin-3 Aggregation and Pathogenesis of Machado-Joseph Disease

  • Ana Luisa Carvalho
  • Alexandra Silva
  • Sandra Macedo-Ribeiro
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1049)


The expansion of a trinucleotide (CAG) repeat, translated into a polyglutamine expanded sequence in the protein encoded by the MJD gene, was identified over 20 years ago as the causative mutation in a severe neurodegenerative disorder originally diagnosed in individuals of Portuguese ancestry. This incapacitating disease, called Machado-Joseph disease or spinocebellar ataxia type 3, is integrated into a larger group of neurodegenerative disorders—the polyglutamine expansion disorders—caused by extension of a CAG repeat in the coding sequence of otherwise unrelated genes. These diseases are generally linked with the appearance of intracellular inclusions, which despite having a controversial role in disease appearance and development represent a characteristic common fingerprint in all polyglutamine-related disorders. Although polyglutamine expansion is an obvious trigger for neuronal dysfunction, the role of the different domains of these complex proteins in the function and aggregation properties of the carrier proteins is being uncovered in recent studies. In this review the current knowledge about the structural and functional features of full-length ataxin-3 protein will be discussed. The intrinsic conformational dynamics and interplay between the globular and intrinsically disordered regions of ataxin-3 will be highlighted, and a perspective picture of the role of known ataxin-3 post-translational modifications on regulating ataxin-3 aggregation and function will be drawn.


Amino acid repeats Amyloid Conformational plasticity Post-translational modifications 



SM-R lab is funded by (i) National Ataxia Foundation, USA, by (ii) FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274), and by (iii) Project Norte-01-0145-FEDER-000008—Porto Neurosciences and Neurologic Disease Research Initiative at I3S, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). ALC lab is funded by (1) the Brain and Behavior Research Foundation, (2) Fondation Lejeune, and (3) the European Regional Development Fund (ERDF), through the Centro 2020 Regional Operational Programme under project CENTRO-01-0145-FEDER-000008:BrainHealth 2020, and through the COMPETE 2020—Operational Programme for Competitiveness and Internationalisation and Portuguese national funds via FCT—Fundação para a Ciência e a Tecnologia, I.P., under project POCI-01-0145-FEDER-007440.


  1. 1.
    Masino L, Musi V, Menon RP, Fusi P, Kelly G, Frenkiel TA, Trottier Y, Pastore A (2003) Domain architecture of the polyglutamine protein ataxin-3: a globular domain followed by a flexible tail. FEBS Lett 549:21–25CrossRefGoogle Scholar
  2. 2.
    Costa Mdo C, Paulson HL (2012) Toward understanding Machado-Joseph disease. Prog Neurobiol 97:239–257CrossRefGoogle Scholar
  3. 3.
    Matos CA, de Macedo-Ribeiro S, Carvalho AL (2011) Polyglutamine diseases: the special case of ataxin-3 and Machado-Joseph disease. Prog Neurobiol 95:26–48CrossRefGoogle Scholar
  4. 4.
    Hofmann K, Falquet L (2001) A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem Sci 26:347–350CrossRefGoogle Scholar
  5. 5.
    Scheel H, Tomiuk S, Hofmann K (2003) Elucidation of ataxin-3 and ataxin-7 function by integrative bioinformatics. Hum Mol Genet 12:2845–2852CrossRefGoogle Scholar
  6. 6.
    Burnett B, Li F, Pittman RN (2003) The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum Mol Genet 12:3195–3205CrossRefGoogle Scholar
  7. 7.
    Chow MK, Mackay JP, Whisstock JC, Scanlon MJ, Bottomley SP (2004) Structural and functional analysis of the Josephin domain of the polyglutamine protein ataxin-3. Biochem Biophys Res Commun 322:387–394CrossRefGoogle Scholar
  8. 8.
    Berke SJ, Chai Y, Marrs GL, Wen H, Paulson HL (2005) Defining the role of ubiquitin-interacting motifs in the polyglutamine disease protein, ataxin-3. J Biol Chem 280:32026–32034CrossRefGoogle Scholar
  9. 9.
    Schmitt I, Linden M, Khazneh H, Evert BO, Breuer P, Klockgether T, Wuellner U (2007) Inactivation of the mouse Atxn3 (ataxin-3) gene increases protein ubiquitination. Biochem Biophys Res Commun 362:734–739CrossRefGoogle Scholar
  10. 10.
    Winborn BJ, Travis SM, Todi SV, Scaglione KM, Xu P, Williams AJ, Cohen RE, Peng J, Paulson HL (2008) The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains. J Biol Chem 283:26436–26443CrossRefGoogle Scholar
  11. 11.
    Nicastro G, Todi SV, Karaca E, Bonvin AM, Paulson HL, Pastore A (2010) Understanding the role of the Josephin domain in the PolyUb binding and cleavage properties of ataxin-3. PLoS ONE 5:e12430CrossRefGoogle Scholar
  12. 12.
    Chai Y, Berke SS, Cohen RE, Paulson HL (2004) Poly-ubiquitin binding by the polyglutamine disease protein ataxin-3 links its normal function to protein surveillance pathways. J Biol Chem 279:3605–3611CrossRefGoogle Scholar
  13. 13.
    Todi SV, Winborn BJ, Scaglione KM, Blount JR, Travis SM, Paulson HL (2009) Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3. EMBO J 28:372–382CrossRefGoogle Scholar
  14. 14.
    Matos CA, Nobrega C, Louros SR, Almeida B, Ferreiro E, Valero J, Pereira de Almeida L, Macedo-Ribeiro S, Carvalho AL (2016) Ataxin-3 phosphorylation decreases neuronal defects in spinocerebellar ataxia type 3 models. J Cell Biol 212:465–480CrossRefGoogle Scholar
  15. 15.
    Mao Y, Senic-Matuglia F, Di Fiore PP, Polo S, Hodsdon ME, De Camilli P (2005) Deubiquitinating function of ataxin-3: insights from the solution structure of the Josephin domain. Proc Natl Acad Sci U S A 102:12700–12705CrossRefGoogle Scholar
  16. 16.
    Nicastro G, Habeck M, Masino L, Svergun DI, Pastore A (2006) Structure validation of the Josephin domain of ataxin-3: conclusive evidence for an open conformation. J Biomol NMR 36:267–277CrossRefGoogle Scholar
  17. 17.
    Nicastro G, Menon RP, Masino L, Knowles PP, McDonald NQ, Pastore A (2005) The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition. Proc Natl Acad Sci U S A 102:10493–10498CrossRefGoogle Scholar
  18. 18.
    Satoh T, Sumiyoshi A, Yagi-Utsumi M, Sakata E, Sasakawa H, Kurimoto E, Yamaguchi Y, Li W, Joazeiro CA, Hirokawa T, Kato K (2014) Mode of substrate recognition by the Josephin domain of ataxin-3, which has an endo-type deubiquitinase activity. FEBS Lett 588:4422–4430CrossRefGoogle Scholar
  19. 19.
    Nicastro G, Masino L, Esposito V, Menon RP, De Simone A, Fraternali F, Pastore A (2009) Josephin domain of ataxin-3 contains two distinct ubiquitin-binding sites. Biopolymers 91:1203–1214CrossRefGoogle Scholar
  20. 20.
    Sanfelice D, De Simone A, Cavalli A, Faggiano S, Vendruscolo M, Pastore A (2014) Characterization of the conformational fluctuations in the Josephin domain of ataxin-3. Biophys J 107:2932–2940CrossRefGoogle Scholar
  21. 21.
    Weeks SD, Grasty KC, Hernandez-Cuebas L, Loll PJ (2011) Crystal structure of a Josephin-ubiquitin complex: evolutionary restraints on ataxin-3 deubiquitinating activity. J Biol Chem 286:4555–4565CrossRefGoogle Scholar
  22. 22.
    Blount JR, Tsou WL, Ristic G, Burr AA, Ouyang M, Galante H, Scaglione KM, Todi SV (2014) Ubiquitin-binding site 2 of ataxin-3 prevents its proteasomal degradation by interacting with Rad23. Nat Commun 5:4638CrossRefGoogle Scholar
  23. 23.
    Song AX, Zhou CJ, Peng Y, Gao XC, Zhou ZR, Fu QS, Hong J, Lin DH, Hu HY (2010) Structural transformation of the tandem ubiquitin-interacting motifs in ataxin-3 and their cooperative interactions with ubiquitin chains. PLoS ONE 5:e13202CrossRefGoogle Scholar
  24. 24.
    Macedo-Ribeiro S, Cortes L, Maciel P, Carvalho AL (2009) Nucleocytoplasmic shuttling activity of ataxin-3. PLoS ONE 4:e5834CrossRefGoogle Scholar
  25. 25.
    Zhemkov VA, Kulminskaya AA, Bezprozvanny IB, Kim M (2016) The 2.2-Angstrom resolution crystal structure of the carboxy-terminal region of ataxin-3. FEBS open bio 6:168–178CrossRefGoogle Scholar
  26. 26.
    Kim M (2013) Beta conformation of polyglutamine track revealed by a crystal structure of Huntingtin N-terminal region with insertion of three histidine residues. Prion 7:221–228CrossRefGoogle Scholar
  27. 27.
    Kim MW, Chelliah Y, Kim SW, Otwinowski Z, Bezprozvanny I (2009) Secondary structure of Huntingtin amino-terminal region. Structure 17:1205–1212CrossRefGoogle Scholar
  28. 28.
    Chow MK, Ellisdon AM, Cabrita LD, Bottomley SP (2004) Polyglutamine expansion in ataxin-3 does not affect protein stability: implications for misfolding and disease. J Biol Chem 279:47643–47651CrossRefGoogle Scholar
  29. 29.
    Scarff CA, Almeida B, Fraga J, Macedo-Ribeiro S, Radford SE, Ashcroft AE (2015) Examination of ataxin-3 (atx-3) aggregation by structural mass spectrometry techniques: a rationale for expedited aggregation upon polyglutamine (polyQ) expansion. Mol Cell Proteomics 14:1241–1253CrossRefGoogle Scholar
  30. 30.
    Santambrogio C, Frana AM, Natalello A, Papaleo E, Regonesi ME, Doglia SM, Tortora P, Invernizzi G, Grandori R (2012) The role of the central flexible region on the aggregation and conformational properties of human ataxin-3. FEBS J 279:451–463CrossRefGoogle Scholar
  31. 31.
    Scarff CA, Sicorello A, Tomé RJL, Macedo-Ribeiro S, Ashcroft AE, Radford SE (2013) A tale of a tail: structural insights into the conformational properties of the polyglutamine protein ataxin-3. Int J Mass Spectrom 345–347:63–70CrossRefGoogle Scholar
  32. 32.
    Paulson HL, Perez MK, Trottier Y, Trojanowski JQ, Subramony SH, Das SS, Vig P, Mandel JL, Fischbeck KH, Pittman RN (1997) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19:333–344CrossRefGoogle Scholar
  33. 33.
    Bevivino AE, Loll PJ (2001) An expanded glutamine repeat destabilizes native ataxin-3 structure and mediates formation of parallel β-fibrils. Proc Natl Acad Sci U S A 98:11955–11960CrossRefGoogle Scholar
  34. 34.
    Fujigasaki H, Uchihara T, Koyano S, Iwabuchi K, Yagishita S, Makifuchi T, Nakamura A, Ishida K, Toru S, Hirai S, Ishikawa K, Tanabe T, Mizusawa H (2000) Ataxin-3 is translocated into the nucleus for the formation of intranuclear inclusions in normal and Machado-Joseph disease brains. Exp Neurol 165:248–256CrossRefGoogle Scholar
  35. 35.
    Kettner M, Willwohl D, Hubbard GB, Rub U, Dick EJ Jr, Cox AB, Trottier Y, Auburger G, Braak H, Schultz C (2002) Intranuclear aggregation of nonexpanded ataxin-3 in marinesco bodies of the nonhuman primate substantia nigra. Exp Neurol 176:117–121CrossRefGoogle Scholar
  36. 36.
    Chow MK, Paulson HL, Bottomley SP (2004) Destabilization of a non-pathological variant of ataxin-3 results in fibrillogenesis via a partially folded intermediate: a model for misfolding in polyglutamine disease. J Mol Biol 335:333–341CrossRefGoogle Scholar
  37. 37.
    Marchal S, Shehi E, Harricane MC, Fusi P, Heitz F, Tortora P, Lange R (2003) Structural instability and fibrillar aggregation of non-expanded human ataxin-3 revealed under high pressure and temperature. J Biol Chem 278:31554–31563CrossRefGoogle Scholar
  38. 38.
    Masino L, Nicastro G, Menon RP, Dal Piaz F, Calder L, Pastore A (2004) Characterization of the structure and the amyloidogenic properties of the Josephin domain of the polyglutamine-containing protein ataxin-3. J Mol Biol 344:1021–1035CrossRefGoogle Scholar
  39. 39.
    Shehi E, Fusi P, Secundo F, Pozzuolo S, Bairati A, Tortora P (2003) Temperature-dependent, irreversible formation of amyloid fibrils by a soluble human ataxin-3 carrying a moderately expanded polyglutamine stretch (Q36). Biochemistry 42:14626–14632CrossRefGoogle Scholar
  40. 40.
    Gales L, Cortes L, Almeida C, Melo CV, Costa MC, Maciel P, Clarke DT, Damas AM, Macedo-Ribeiro S (2005) Towards a structural understanding of the fibrillization pathway in Machado-Joseph’s disease: trapping early oligomers of non-expanded ataxin-3. J Mol Biol 353:642–654CrossRefGoogle Scholar
  41. 41.
    de Chiara C, Pastore A (2014) Kaleidoscopic protein-protein interactions in the life and death of ataxin-1: new strategies against protein aggregation. Trends Neurosci 37:211–218CrossRefGoogle Scholar
  42. 42.
    Eftekharzadeh B, Piai A, Chiesa G, Mungianu D, Garcia J, Pierattelli R, Felli IC, Salvatella X (2016) Sequence context influences the structure and aggregation behavior of a PolyQ tract. Biophys J 110:2361–2366CrossRefGoogle Scholar
  43. 43.
    Menon RP, Soong D, de Chiara C, Holt M, McCormick JE, Anilkumar N, Pastore A (2014) Mapping the self-association domains of ataxin-1: identification of novel non overlapping motifs. PeerJ 2:e323CrossRefGoogle Scholar
  44. 44.
    Monsellier E, Redeker V, Ruiz-Arlandis G, Bousset L, Melki R (2015) Molecular interaction between the chaperone Hsc70 and the N-terminal flank of huntingtin exon 1 modulates aggregation. J Biol Chem 290:2560–2576CrossRefGoogle Scholar
  45. 45.
    Masino L, Nicastro G, De Simone A, Calder L, Molloy J, Pastore A (2011) The Josephin domain determines the morphological and mechanical properties of ataxin-3 fibrils. Biophys J 100:2033–2042CrossRefGoogle Scholar
  46. 46.
    Ellisdon AM, Pearce MC, Bottomley SP (2007) Mechanisms of ataxin-3 misfolding and fibril formation: kinetic analysis of a disease-associated polyglutamine protein. J Mol Biol 368:595–605CrossRefGoogle Scholar
  47. 47.
    Ellisdon AM, Thomas B, Bottomley SP (2006) The two-stage pathway of ataxin-3 fibrillogenesis involves a polyglutamine-independent step. J Biol Chem 281:16888–16896CrossRefGoogle Scholar
  48. 48.
    Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489CrossRefGoogle Scholar
  49. 49.
    Lupton CJ, Steer DL, Wintrode PL, Bottomley SP, Hughes VA, Ellisdon AM (2015) Enhanced molecular mobility of ordinarily structured regions drives polyglutamine disease. J Biol Chem 290:24190–24200CrossRefGoogle Scholar
  50. 50.
    Natalello A, Frana AM, Relini A, Apicella A, Invernizzi G, Casari C, Gliozzi A, Doglia SM, Tortora P, Regonesi ME (2011) A major role for side-chain polyglutamine hydrogen bonding in irreversible ataxin-3 aggregation. PLoS ONE 6:e18789CrossRefGoogle Scholar
  51. 51.
    Masino L, Nicastro G, Calder L, Vendruscolo M, Pastore A (2011) Functional interactions as a survival strategy against abnormal aggregation. FASEB J 25:45–54CrossRefGoogle Scholar
  52. 52.
    Robertson AL, Headey SJ, Saunders HM, Ecroyd H, Scanlon MJ, Carver JA, Bottomley SP (2010) Small heat-shock proteins interact with a flanking domain to suppress polyglutamine aggregation. Proc Natl Acad Sci U S A 107:10424–10429CrossRefGoogle Scholar
  53. 53.
    Almeida B, Fernandes S, Abreu IA, Macedo-Ribeiro S (2013) Trinucleotide repeats: a structural perspective. Front Neurol 4:76PubMedPubMedCentralGoogle Scholar
  54. 54.
    Kristensen LV, Oppermann FS, Rauen MJ, Hartmann-Petersen R, Thirstrup K (2017) Polyglutamine expansion of ataxin-3 alters its degree of ubiquitination and phosphorylation at specific sites. Neurochemistry International (in press)Google Scholar
  55. 55.
    Fei E, Jia N, Zhang T, Ma X, Wang H, Liu C, Zhang W, Ding L, Nukina N, Wang G (2007) Phosphorylation of ataxin-3 by glycogen synthase kinase 3β at serine 256 regulates the aggregation of ataxin-3. Biochem Biophys Res Commun 357:487–492CrossRefGoogle Scholar
  56. 56.
    Mueller T, Breuer P, Schmitt I, Walter J, Evert BO, Wullner U (2009) CK2-dependent phosphorylation determines cellular localization and stability of ataxin-3. Hum Mol Genet 18:3334–3343CrossRefGoogle Scholar
  57. 57.
    Tao RS, Fei EK, Ying Z, Wang HF, Wang GH (2008) Casein kinase 2 interacts with and phosphorylates ataxin-3. Neurosci Bull 24:271–277CrossRefGoogle Scholar
  58. 58.
    Todi SV, Scaglione KM, Blount JR, Basrur V, Conlon KP, Pastore A, Elenitoba-Johnson K, Paulson HL (2010) Activity and cellular functions of the deubiquitinating enzyme and polyglutamine disease protein ataxin-3 are regulated by ubiquitination at lysine 117. J Biol Chem 285:39303–39313CrossRefGoogle Scholar
  59. 59.
    Faggiano S, Menon RP, Kelly GP, Todi SV, Scaglione KM, Konarev PV, Svergun DI, Paulson HL, Pastore A (2015) Allosteric regulation of deubiquitylase activity through ubiquitination. Front Mol Biosci 2:2CrossRefGoogle Scholar
  60. 60.
    Jana NR, Dikshit P, Goswami A, Kotliarova S, Murata S, Tanaka K, Nukina N (2005) Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J Biol Chem 280:11635–11640CrossRefGoogle Scholar
  61. 61.
    Matsumoto M, Yada M, Hatakeyama S, Ishimoto H, Tanimura T, Tsuji S, Kakizuka A, Kitagawa M, Nakayama KI (2004) Molecular clearance of ataxin-3 is regulated by a mammalian E4. EMBO J 23:659–669CrossRefGoogle Scholar
  62. 62.
    Miller VM, Nelson RF, Gouvion CM, Williams A, Rodriguez-Lebron E, Harper SQ, Davidson BL, Rebagliati MR, Paulson HL (2005) CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. Journal Neurosci Official J Soc Neurosci 25:9152–9161CrossRefGoogle Scholar
  63. 63.
    Tsou WL, Burr AA, Ouyang M, Blount JR, Scaglione KM, Todi SV (2013) Ubiquitination regulates the neuroprotective function of the deubiquitinase ataxin-3 in vivo. J Biol Chem 288:34460–34469CrossRefGoogle Scholar
  64. 64.
    Almeida B, Abreu IA, Matos CA, Fraga JS, Fernandes S, Macedo MG, Gutierrez-Gallego R, Pereira PJ, Carvalho AL, Macedo-Ribeiro S (2015) SUMOylation of the brain-predominant ataxin-3 isoform modulates its interaction with p97. Biochem Biophys Acta 1852:1950–1959PubMedGoogle Scholar
  65. 65.
    Zhou YF, Liao SS, Luo YY, Tang JG, Wang JL, Lei LF, Chi JW, Du J, Jiang H, Xia K, Tang BS, Shen L (2013) SUMO-1 modification on K166 of polyQ-expanded ataxin-3 strengthens its stability and increases its cytotoxicity. PLoS ONE 8:e54214CrossRefGoogle Scholar
  66. 66.
    Wang Q, Li L, Ye Y (2006) Regulation of retrotranslocation by p97-associated deubiquitinating enzyme ataxin-3. J Cell Biol 174:963–971CrossRefGoogle Scholar
  67. 67.
    Zhong X, Pittman RN (2006) Ataxin-3 binds VCP/p97 and regulates retrotranslocation of ERAD substrates. Hum Mol Genet 15:2409–2420CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ana Luisa Carvalho
    • 1
    • 2
  • Alexandra Silva
    • 3
    • 4
  • Sandra Macedo-Ribeiro
    • 3
    • 4
  1. 1.CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
  2. 2.Department of Life Sciences, Faculty of Sciences and TechnologyUniversity of CoimbraCoimbraPortugal
  3. 3.i3S - Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
  4. 4.IBMC—Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal

Personalised recommendations