Advertisement

Spinocerebellar Ataxia Type 17 (SCA17)

  • Yasuko Toyoshima
  • Hitoshi Takahashi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1049)

Abstract

In 1999, a polyglutamine expansion was identified in the transcription factor TATA-binding protein (TBP) in a patient with ataxia with negative family history. Subsequently, CAG/CAA repeat expansions in the TBP gene were identified in families with spinocerebellar ataxia (SCA), establishing this repeat expansion as the underlying mutation in SCA type 17 (SCA17). There are several characteristic differences between SCA17 and other polyglutamine diseases. First, SCA17 shows a complex and variable clinical phenotype, in some cases overlapping that of Huntington’s disease. Second, compared to the other SCA subtypes caused by expanded trinucleotide repeats, anticipation in SCA17 kindreds is rare because of the characteristic structure of the TBP gene. And thirdly, SCA17 patients often have diagnostic problems that may arise from non-penetrance. Because the gap between normal and abnormal repeat numbers is very narrow, it is difficult to determine a cutoff value for pathologic CAG repeat number in SCA17. Herein, we review the clinical, genetic and pathologic features of SCA17.

Keywords

Spinocerebellar ataxia Huntington’s disease-like Chorea Dystonia Dementia 

References

  1. 1.
    Fujigasaki H, De Martin JJ, Deyn PP, Camuzat A, Deffond D, Stevanin G, Van Dermaut B, Broeckhoven C, Durr A, Brice A (2001) CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain 124:1939–1947CrossRefGoogle Scholar
  2. 2.
    Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet 8:2047–2053CrossRefGoogle Scholar
  3. 3.
    Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10:1441–1448CrossRefGoogle Scholar
  4. 4.
    Zuhlke C, Hellenbroich Y, Dalski A, Kononowa N, Hagenah J, Vieregge P, Riess O, Klein C, Schwinger E (2001) Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur J Hum Genet 9:160–164CrossRefGoogle Scholar
  5. 5.
    Bech S, Petersen T, Norremolle A, Gjedde A, Ehlers L, Eiberg H, Hjermind LE, Hasholt L, Lundorf E, Nielsen JE (2010) Huntington’s disease-like and ataxia syndromes: identification of a family with a de novo SCA17/TBP mutation. Parkinsonism Relat Disord 16:12–15CrossRefGoogle Scholar
  6. 6.
    Shatunov A, Fridman EA, Pagan FI, Leib J, Singleton A, Hallett M, Goldfarb LG (2004) Small de novo duplication in the repeat region of the TATA-box-binding protein gene manifest with a phenotype similar to variant Creutzfeldt-Jakob disease. Clin Genet 66:496–501CrossRefGoogle Scholar
  7. 7.
    Schols L, Bauer P, Schmidt T, Schulte T, Riess O (2004) Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 3:291–304CrossRefGoogle Scholar
  8. 8.
    Koutsis G, Panas M, Paraskevas GP, Bougea AM, Kladi A, Karadima G, Kapaki E (2014) From mild ataxia to huntington disease phenocopy: the multiple faces of spinocerebellar ataxia 17. Case Rep Neurol Med 2014:643289PubMedPubMedCentralGoogle Scholar
  9. 9.
    Nielsen TT, Mardosiene S, Lokkegaard A, Stokholm J, Ehrenfels S, Bech S, Friberg L, Nielsen JK, Nielsen JE (2012) Severe and rapidly progressing cognitive phenotype in a SCA17-family with only marginally expanded CAG/CAA repeats in the TATA-box binding protein gene: a case report. BMC Neurol 12:73CrossRefGoogle Scholar
  10. 10.
    van de Schneider SA, Warrenburg BP, Hughes TD, Davis M, Sweeney M, Wood N, Quinn NP, Bhatia KP (2006) Phenotypic homogeneity of the Huntington disease-like presentation in a SCA17 family. Neurology 67:1701–1703CrossRefGoogle Scholar
  11. 11.
    Lin IS, Wu RM, Lee-Chen GJ, Shan DE, Gwinn-Hardy K (2007) The SCA17 phenotype can include features of MSA-C, PSP and cognitive impairment. Parkinsonism Relat Disord 13:246–249CrossRefGoogle Scholar
  12. 12.
    Herrema H, Mikkelsen T, Robin A, LeWitt P, Sidiropoulos C (2014) SCA 17 phenotype with intermediate triplet repeat number. J Neurol Sci 345:269–270CrossRefGoogle Scholar
  13. 13.
    Mariotti C, Alpini D, Fancellu R, Soliveri P, Grisoli M, Ravaglia S, Lovati C, Fetoni V, Giaccone G, Castucci A, Taroni F, Gellera C Di, Donato S (2007) Spinocerebellar ataxia type 17 (SCA17): oculomotor phenotype and clinical characterization of 15 Italian patients. J Neurol 254:1538–1546CrossRefGoogle Scholar
  14. 14.
    Stevanin G, Fujigasaki H, Lebre AS, Camuzat A, Jeannequin C, Dode C, Takahashi J, San C, Bellance R, Brice A, Durr A (2003) Huntington’s disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain 126:1599–1603CrossRefGoogle Scholar
  15. 15.
    Toyoshima Y, Yamada M, Onodera O, Shimohata M, Inenaga C, Fujita N, Morita M, Tsuji S, Takahashi H (2004) SCA17 homozygote showing Huntington’s disease-like phenotype. Ann Neurol 55:281–286CrossRefGoogle Scholar
  16. 16.
    Walker FO (2007) Huntington’s disease. Lancet 369:218–228CrossRefGoogle Scholar
  17. 17.
    Bauer P, Laccone F, Rolfs A, Wullner U, Bosch S, Peters H, Liebscher S, Scheible M, Epplen JT, Weber BH, Holinski-Feder E, Weirich-Schwaiger H, Morris-Rosendahl DJ, Andrich J, Riess O (2004) Trinucleotide repeat expansion in SCA17/TBP in white patients with Huntington’s disease-like phenotype. J Med Genet 41:230–232CrossRefGoogle Scholar
  18. 18.
    Kambouris M, Bohlega S, Al-Tahan A, Meyer BF (2000) Localization of the gene for a novel autosomal recessive neurodegenerative Huntington-like disorder to 4p15.3. Am J Hum Genet 66:445–452CrossRefGoogle Scholar
  19. 19.
    Margolis RL, O’Hearn E, Rosenblatt A, Willour V, Holmes SE, Franz ML, Callahan C, Hwang HS, Troncoso JC, Ross CA (2001) A disorder similar to Huntington’s disease is associated with a novel CAG repeat expansion. Ann Neurol 50:373–380CrossRefGoogle Scholar
  20. 20.
    Schneider SA, Walker RH, Bhatia KP (2007) The Huntington’s disease-like syndromes: what to consider in patients with a negative Huntington’s disease gene test. Nat Clin Pract Neurol 3:517–525CrossRefGoogle Scholar
  21. 21.
    Wild EJ, Mudanohwo EE, Sweeney MG, Schneider SA, Beck J, Bhatia KP, Rossor MN, Davis MB, Tabrizi SJ (2008) Huntington’s disease phenocopies are clinically and genetically heterogeneous. Mov Disord 23:716–720CrossRefGoogle Scholar
  22. 22.
    Wild EJ, Tabrizi SJ (2007) Huntington’s disease phenocopy syndromes. Curr Opin Neurol 20:681–687CrossRefGoogle Scholar
  23. 23.
    Xiang F, Almqvist EW, Huq M, Lundin A, Hayden MR, Edstrom L, Anvret M, Zhang Z (1998) A Huntington disease-like neurodegenerative disorder maps to chromosome 20p. Am J Hum Genet 63:1431–1438CrossRefGoogle Scholar
  24. 24.
    Stevanin G, Brice A (2008) Spinocerebellar ataxia 17 (SCA17) and Huntington’s disease-like 4 (HDL4). Cerebellum 7:170–178CrossRefGoogle Scholar
  25. 25.
    Moore RC, Xiang F, Monaghan J, Han D, Zhang Z, Edstrom L, Anvret M, Prusiner SB (2001) Huntington disease phenocopy is a familial prion disease. Am J Hum Genet 69:1385–1388CrossRefGoogle Scholar
  26. 26.
    Holmes SE, O’Hearn E, Rosenblatt A, Callahan C, Hwang HS, Ingersoll-Ashworth RG, Fleisher A, Stevanin G, Brice A, Potter NT, Ross CA, Margolis RL (2001) A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2. Nat Genet 29:377–378CrossRefGoogle Scholar
  27. 27.
    Hanna MG, Davis MB, Sweeney MG, Noursadeghi M, Ellis CJ, Elliot P, Wood NW, Marsden CD (1998) Generalized chorea in two patients harboring the Friedreich’s ataxia gene trinucleotide repeat expansion. Mov Disord 13:339–340CrossRefGoogle Scholar
  28. 28.
    Hensman Moss DJ, Poulter M, Beck J, Hehir J, Polke JM, Campbell T, Adamson G, Mudanohwo E, McColgan P, Haworth A, Wild EJ, Sweeney MG, Houlden H, Mead S, Tabrizi SJ (2014) C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology 82:292–299CrossRefGoogle Scholar
  29. 29.
    Maltecca F, Filla A, Castaldo I, Coppola G, Fragassi NA, Carella M, Bruni A, Cocozza S, Casari G, De Servadio A, Michele G (2003) Intergenerational instability and marked anticipation in SCA-17. Neurology 61:1441–1443CrossRefGoogle Scholar
  30. 30.
    Belluzzo M, Musho-Ilbeh S, Monti F, Pizzolato G (2012) A case of nocturnal frontal lobe epilepsy in a patient with spinocerebellar ataxia type 17. Seizure 21:805–806CrossRefGoogle Scholar
  31. 31.
    Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H, Schols L, Riess O (2003) Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol 54:367–375CrossRefGoogle Scholar
  32. 32.
    Doherty KM, Warner TT, Lees AJ (2014) Late onset ataxia: MSA-C or SCA 17? A gene penetrance dilemma. Mov Disord 29:36–38CrossRefGoogle Scholar
  33. 33.
    Loy CT, Sweeney MG, Davis MB, Wills AJ, Sawle GV, Lees AJ, Tabrizi SJ (2005) Spinocerebellar ataxia type 17: extension of phenotype with putaminal rim hyperintensity on magnetic resonance imaging. Mov Disord 20:1521–1523CrossRefGoogle Scholar
  34. 34.
    Payami H, Nutt J, Gancher S, Bird T, McNeal MG, Seltzer WK, Hussey J, Lockhart P, Gwinn-Hardy K, Singleton AA, Singleton AB, Hardy J, Farrer M (2003) SCA2 may present as levodopa-responsive parkinsonism. Mov Disord 18:425–429CrossRefGoogle Scholar
  35. 35.
    Imamura A, Sugai K, Watanabe S, Hamada F, Kurashige T, Takashima S (1994) High intensity in the globus pallidus on proton and T2-weighted MRI in a case of dentato-ruburo-pallido-luysian atrophy of myoclonus epilepsy type. Acta Paediatr Jpn 36:527–530CrossRefGoogle Scholar
  36. 36.
    Tanaka M, Hirai S, Kondo S, Sun X, Nakagawa T, Tanaka S, Hayashi K, Okamoto K (1998) Cerebral hypoperfusion and hypometabolism with altered striatal signal intensity in chorea-acanthocytosis: a combined PET and MRI study. Mov Disord 13:100–107CrossRefGoogle Scholar
  37. 37.
    Wray SH, Provenzale JM, Johns DR, Thulborn KR (1995) MR of the brain in mitochondrial myopathy. AJNR Am J Neuroradiol 16:1167–1173PubMedGoogle Scholar
  38. 38.
    Feng JY, Huang B, Yang WQ, Zhang YH, Wang LM, Wang LJ, Zhong XL (2015) The putaminal abnormalities on 3.0T magnetic resonance imaging: can they separate parkinsonism-predominant multiple system atrophy from Parkinson’s disease? Acta Radiol 56:322–328CrossRefGoogle Scholar
  39. 39.
    Schrag A, Kingsley D, Phatouros C, Mathias CJ, Lees AJ, Daniel SE, Quinn NP (1998) Clinical usefulness of magnetic resonance imaging in multiple system atrophy. J Neurol Neurosurg Psychiatry 65:65–71CrossRefGoogle Scholar
  40. 40.
    Gunther P, Storch A, Schwarz J, Sabri O, Steinbach P, Wagner A, Hesse S (2004) Basal ganglia involvement of a patient with SCA 17—a new form of autosomal dominant spinocerebellar ataxia. J Neurol 251:896–897CrossRefGoogle Scholar
  41. 41.
    Toyoshima Y, Onodera O, Yamada M, Tsuji S, Takahashi H (2005) Spinocerebellar ataxia type 17. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K (eds) GeneReviews(R). Seattle (WA)Google Scholar
  42. 42.
    Nanda A, Jackson SA, Schwankhaus JD, Metzer WS (2007) Case of spinocerebellar ataxia type 17 (SCA17) associated with only 41 repeats of the TATA-binding protein (TBP) gene. Mov Disord 22:436CrossRefGoogle Scholar
  43. 43.
    Alibardi A, Squitieri F, Fattapposta F, Missori P, Pierelli F, Trompetto C, Curra A (2014) Psychiatric onset and late chorea in a patient with 41 CAG repeats in the TATA-binding protein gene. Parkinsonism Relat Disord 20:678–679CrossRefGoogle Scholar
  44. 44.
    Park H, Jeon BS, Shin JH, Park SH (2016) A patient with 41 CAG repeats in SCA17 presenting with parkinsonism and chorea. Parkinsonism Relat Disord 22:106–107CrossRefGoogle Scholar
  45. 45.
    Oda M, Maruyama H, Komure O, Morino H, Terasawa H, Izumi Y, Imamura T, Yasuda M, Ichikawa K, Ogawa M, Matsumoto M, Kawakami H (2004) Possible reduced penetrance of expansion of 44 to 47 CAG/CAA repeats in the TATA-binding protein gene in spinocerebellar ataxia type 17. Arch Neurol 61:209–212CrossRefGoogle Scholar
  46. 46.
    Zuhlke C, Dalski A, Schwinger E, Finckh U (2005) Spinocerebellar ataxia type 17: report of a family with reduced penetrance of an unstable Gln49 TBP allele, haplotype analysis supporting a founder effect for unstable alleles and comparative analysis of SCA17 genotypes. BMC Med Genet 6:27CrossRefGoogle Scholar
  47. 47.
    Shin JH, Park H, Ehm GH, Lee WW, Yun JY, Kim YE, Lee JY, Kim HJ, Kim JM, Jeon BS, Park SS (2015) The pathogenic role of low range repeats in SCA17. PLoS ONE 10:e0135275CrossRefGoogle Scholar
  48. 48.
    Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M, Folstein S, Ross C, Franz M, Abbott M et al (1993) Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 4:387–392CrossRefGoogle Scholar
  49. 49.
    Dorsman JC, Bremmer-Bout M, van Pepers B, Den Ommen GJ, Dunnen JT (2002) Interruption of perfect CAG repeats by CAA triplets improves the stability of glutamine-encoding repeat sequences. Biotechniques 33:976–978PubMedGoogle Scholar
  50. 50.
    Gao R, Matsuura T, Coolbaugh M, Zuhlke C, Nakamura K, Rasmussen A, Siciliano MJ, Ashizawa T, Lin X (2008) Instability of expanded CAG/CAA repeats in spinocerebellar ataxia type 17. Eur J Hum Genet 16:215–222CrossRefGoogle Scholar
  51. 51.
    Zuhlke CH, Spranger M, Spranger S, Voigt R, Lanz M, Gehlken U, Hinrichs F, Schwinger E (2003) SCA17 caused by homozygous repeat expansion in TBP due to partial isodisomy 6. Eur J Hum Genet 11:629–632CrossRefGoogle Scholar
  52. 52.
    Bruni AC, Takahashi-Fujigasaki J, Maltecca F, Foncin JF, Servadio A, Casari G, D’Adamo P, Maletta R, Curcio SA De, Michele G, Filla A El, Hachimi KH, Duyckaerts C (2004) Behavioral disorder, dementia, ataxia, and rigidity in a large family with TATA box-binding protein mutation. Arch Neurol 61:1314–1320CrossRefGoogle Scholar
  53. 53.
    Yamada M, Tsuji S, Takahashi H (2000) Pathology of CAG repeat diseases. Neuropathology 20:319–325CrossRefGoogle Scholar
  54. 54.
    Sato T, Miura M, Yamada M, Yoshida T, Wood JD, Yazawa I, Masuda M, Suzuki T, Shin RM, Yau HJ, Liu FC, Shimohata T, Onodera O, Ross CA, Katsuki M, Takahashi H, Kano M, Aosaki T, Tsuji S (2009) Severe neurological phenotypes of Q129 DRPLA transgenic mice serendipitously created by en masse expansion of CAG repeats in Q76 DRPLA mice. Hum Mol Genet 18:723–736CrossRefGoogle Scholar
  55. 55.
    Yamada M, Sato T, Tsuji S, Takahashi H (2008) CAG repeat disorder models and human neuropathology: similarities and differences. Acta Neuropathol 115:71–86CrossRefGoogle Scholar
  56. 56.
    Yamada M, Hayashi S, Tsuji S, Takahashi H (2001) Involvement of the cerebral cortex and autonomic ganglia in Machado-Joseph disease. Acta Neuropathol 101:140–144PubMedGoogle Scholar
  57. 57.
    Yamada M, Wood JD, Shimohata T, Hayashi S, Tsuji S, Ross CA, Takahashi H (2001) Widespread occurrence of intranuclear atrophin-1 accumulation in the central nervous system neurons of patients with dentatorubral-pallidoluysian atrophy. Ann Neurol 49:14–23CrossRefGoogle Scholar
  58. 58.
    Lupton CJ, Steer DL, Wintrode PL, Bottomley SP, Hughes VA, Ellisdon AM (2015) Enhanced molecular mobility of ordinarily structured regions drives polyglutamine disease. J Biol Chem 290:24190–24200CrossRefGoogle Scholar
  59. 59.
    Xu Z, Tito AJ, Rui YN, Zhang S (2015) Studying polyglutamine diseases in Drosophila. Exp Neurol 274:25–41CrossRefGoogle Scholar
  60. 60.
    Ross CA, Margolis RL, Becher MW, Wood JD, Engelender S, Cooper JK, Sharp AH (1998) Pathogenesis of neurodegenerative diseases associated with expanded glutamine repeats: new answers, new questions. Prog Brain Res 117:397–419CrossRefGoogle Scholar
  61. 61.
    Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, Saudou F, Weber C, David G, Tora L et al (1995) Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature 378:403–406CrossRefGoogle Scholar
  62. 62.
    Cummings CJ, Reinstein E, Sun Y, Antalffy B, Jiang Y, Ciechanover A, Orr HT, Beaudet AL, Zoghbi HY (1999) Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 24:879–892CrossRefGoogle Scholar
  63. 63.
    Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, Clark HB, Zoghbi HY, Orr HT (1998) Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95:41–53CrossRefGoogle Scholar
  64. 64.
    Saudou F, Finkbeiner S, Devys D, Greenberg ME (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95:55–66CrossRefGoogle Scholar
  65. 65.
    Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–810CrossRefGoogle Scholar
  66. 66.
    Bowman AB, Lam YC, Jafar-Nejad P, Chen HK, Richman R, Samaco RC, Fryer JD, Kahle JJ, Orr HT, Zoghbi HY (2007) Duplication of Atxn1l suppresses SCA1 neuropathology by decreasing incorporation of polyglutamine-expanded ataxin-1 into native complexes. Nat Genet 39:373–379CrossRefGoogle Scholar
  67. 67.
    Reid SJ, van Rees MI, Roon-Mom WM, Jones AL, MacDonald ME, Sutherland G, During MJ, Faull RL, Owen MJ, Dragunow M, Snell RG (2003) Molecular investigation of TBP allele length: a SCA17 cellular model and population study. Neurobiol Dis 13:37–45CrossRefGoogle Scholar
  68. 68.
    Schaffar G, Breuer P, Boteva R, Behrends C, Tzvetkov N, Strippel N, Sakahira H, Siegers K, Hayer-Hartl M, Hartl FU (2004) Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol Cell 15:95–105CrossRefGoogle Scholar
  69. 69.
    Hsu TC, Wang CK, Yang CY, Lee LC, Hsieh-Li HM, Ro LS, Chen CM, Lee-Chen GJ, Su MT (2014) Deactivation of TBP contributes to SCA17 pathogenesis. Hum Mol Genet 23:6878–6893CrossRefGoogle Scholar
  70. 70.
    Ren J, Jegga AG, Zhang M, Deng J, Liu J, Gordon CB, Aronow BJ, Lu LJ, Zhang B, Ma J (2011) A Drosophila model of the neurodegenerative disease SCA17 reveals a role of RBP-J/Su(H) in modulating the pathological outcome. Hum Mol Genet 20:3424–3436CrossRefGoogle Scholar
  71. 71.
    Friedman MJ, Shah AG, Fang ZH, Ward EG, Warren ST, Li S, Li XJ (2007) Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration. Nat Neurosci 10:1519–1528CrossRefGoogle Scholar
  72. 72.
    Huang S, Ling JJ, Yang S, Li XJ, Li S (2011) Neuronal expression of TATA box-binding protein containing expanded polyglutamine in knock-in mice reduces chaperone protein response by impairing the function of nuclear factor-Y transcription factor. Brain 134:1943–1958CrossRefGoogle Scholar
  73. 73.
    Kelp A, Koeppen AH, Petrasch-Parwez E, Calaminus C, Bauer C, Portal E, Yu-Taeger L, Pichler B, Bauer P, Riess O, Nguyen HP (2013) A novel transgenic rat model for spinocerebellar ataxia type 17 recapitulates neuropathological changes and supplies in vivo imaging biomarkers. J Neurosci 33:9068–9081CrossRefGoogle Scholar
  74. 74.
    Lee GC, Lin CH, Tao YC, Yang JM, Hsu KC, Huang YJ, Huang SH, Kung PJ, Chen WL, Wang CM, Wu YR, Chen CM, Lin JY, Hsieh-Li HM, Lee-Chen GJ (2015) The potential of lactulose and melibiose, two novel trehalase-indigestible and autophagy-inducing disaccharides, for polyQ-mediated neurodegenerative disease treatment. Neurotoxicology 48:120–130CrossRefGoogle Scholar
  75. 75.
    Koshy BT, Zoghbi HY (1997) The CAG/polyglutamine tract diseases: gene products and molecular pathogenesis. Brain Pathol 7:927–942CrossRefGoogle Scholar
  76. 76.
    Burley SK (1996) The TATA box binding protein. Curr Opin Struct Biol 6:69–75CrossRefGoogle Scholar
  77. 77.
    Sharp PA (1992) TATA-binding protein is a classless factor. Cell 68:819–821CrossRefGoogle Scholar
  78. 78.
    Martianov I, Viville S, Davidson I (2002) RNA polymerase II transcription in murine cells lacking the TATA binding protein. Science 298:1036–1039CrossRefGoogle Scholar
  79. 79.
    Friedman MJ, Wang CE, Li XJ, Li S (2008) Polyglutamine expansion reduces the association of TATA-binding protein with DNA and induces DNA binding-independent neurotoxicity. J Biol Chem 283:8283–8290CrossRefGoogle Scholar
  80. 80.
    Huang S, Yang S, Guo J, Yan S, Gaertig MA, Li S, Li XJ (2015) Large polyglutamine repeats cause muscle degeneration in SCA17 mice. Cell Rep 13:196–208CrossRefGoogle Scholar
  81. 81.
    Di Marco S, Mazroui R, Dallaire P, Chittur S, Tenenbaum SA, Radzioch D, Marette A, Gallouzi IE (2005) NF-kappa B-mediated MyoD decay during muscle wasting requires nitric oxide synthase mRNA stabilization, HuR protein, and nitric oxide release. Mol Cell Biol 25:6533–6545CrossRefGoogle Scholar
  82. 82.
    Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS Jr (2000) NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289:2363–2366CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of PathologyBrain Research Institute, University of NiigataNiigataJapan

Personalised recommendations