Advertisement

Clinical Features of Huntington’s Disease

  • Rhia Ghosh
  • Sarah J. Tabrizi
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1049)

Abstract

Huntington’s disease (HD) is the most common monogenic neurodegenerative disease and the commonest genetic dementia in the developed world. With autosomal dominant inheritance, typically mid-life onset, and unrelenting progressive motor, cognitive and psychiatric symptoms over 15–20 years, its impact on patients and their families is devastating. The causative genetic mutation is an expanded CAG trinucleotide repeat in the gene encoding the Huntingtin protein, which leads to a prolonged polyglutamine stretch at the N-terminus of the protein. Since the discovery of the gene over 20 years ago much progress has been made in HD research, and although there are currently no disease-modifying treatments available, there are a number of exciting potential therapeutic developments in the pipeline. In this chapter we discuss the epidemiology, genetics and pathogenesis of HD as well as the clinical presentation and management of HD, which is currently focused on symptomatic treatment. The principles of genetic testing for HD are also explained. Recent developments in therapeutics research, including gene silencing and targeted small molecule approaches are also discussed, as well as the search for HD biomarkers that will assist the validation of these potentially new treatments.

Keywords

Huntington’s disease Genetics Symptoms Management Therapeutics Biomarkers 

Notes

Acknowledgements

Dr. Rhia Ghosh is funded entirely by a Medical Research Council UK Clinical Research Fellowship.

Professor Sarah J Tabrizi receives grant funding for her research from the EU FP7 health call, Medical Research Council UK, CHDI Foundation, Huntington Disease Association of the UK, Dementiaand Neurodegenerative Disease Network UK, European Huntington’s Disease Network, the Wellcome Trust, the UCL/UCLH Biomedical Research Centre and BBSRC.

References

  1. 1.
    Fisher ER, Hayden MR (2014) Multisource ascertainment of Huntington disease in Canada: prevalence and population at risk. Mov Disord 29:105–114PubMedCrossRefGoogle Scholar
  2. 2.
    Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98PubMedCrossRefGoogle Scholar
  3. 3.
    Harper P (2002) The epidemiology of Huntington’s disease. Huntington’s disease. Oxford Medical Publications, OxfordGoogle Scholar
  4. 4.
    Evans SJ, Douglas I, Rawlins MD, Wexler NS, Tabrizi SJ, Smeeth L (2013) Prevalence of adult Huntington’s disease in the UK based on diagnoses recorded in general practice records. J Neurol Neurosurg PsychiatryCrossRefGoogle Scholar
  5. 5.
    Rawlins M (2010) Huntington’s disease out of the closet? Lancet 376:1372–1373PubMedCrossRefGoogle Scholar
  6. 6.
    Morrison PJ (2012) Prevalence estimates of Huntington disease in Caucasian populations are gross underestimates. Mov Disord 27:1707–1708. (author reply 8–9)PubMedCrossRefGoogle Scholar
  7. 7.
    Kay C, Fisher E, Michael H (2014) Epidemiology. In: Tabrizi SJ, Jones L (eds) Bates G. Oxford University Press, Huntington’s disease, pp 131–164Google Scholar
  8. 8.
    Gusella JF, Wexler NS, Conneally PM et al (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306:234–238PubMedCrossRefGoogle Scholar
  9. 9.
    MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, Barnes G et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983CrossRefGoogle Scholar
  10. 10.
    Snell RG, MacMillan JC, Cheadle JP et al (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet 4:393–397PubMedCrossRefGoogle Scholar
  11. 11.
    Rubinsztein DC, Leggo J, Coles R et al (1996) Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats. Am J Hum Genet 59:16–22PubMedPubMedCentralGoogle Scholar
  12. 12.
    Killoran A, Biglan KM, Jankovic J, et al (2013) Characterization of the Huntington intermediate CAG repeat expansion phenotype in PHAROS. NeurologyGoogle Scholar
  13. 13.
    Semaka A, Kay C, Doty C et al (2013) CAG size-specific risk estimates for intermediate allele repeat instability in Huntington disease. J Med Genet 50:696–703PubMedCrossRefGoogle Scholar
  14. 14.
    Zühlke C, Riess O, Bockel B, Lange H, Thies U (1993) Mitotic stability and meiotic variability of the (CAG)n repeat in the Huntington disease gene. Hum Mol Genet 2:2063–2067PubMedCrossRefGoogle Scholar
  15. 15.
    Kremer B, Almqvist E, Theilmann J et al (1995) Sex-dependent mechanisms for expansions and contractions of the CAG repeat on affected Huntington disease chromosomes. Am J Hum Genet 57:343–350PubMedPubMedCentralGoogle Scholar
  16. 16.
    Barbeau A (1970) Parental ascent in the juvenile form of Huntington’s chorea. Lancet 2:937PubMedCrossRefGoogle Scholar
  17. 17.
    Kremer B (2002) Clinical Neurology of Huntington’s disease. In: Harper P, (ed) Huntington’s disease. Oxford Medical Publications, OxfordGoogle Scholar
  18. 18.
    Siesling S, Vegter-van de Vlis M, Losekoot M et al (2000) Family history and DNA analysis in patients with suspected Huntington’s disease. J Neurol Neurosurg Psychiatry 69:54–59PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Gusella JF, MacDonald ME, Lee JM (2014) Genetic modifiers of Huntington’s disease. Mov Disord 29:1359–1365PubMedCrossRefGoogle Scholar
  20. 20.
    Consortium GMoHsDG-H (2015) Identification of Genetic Factors that Modify Clinical Onset of Huntington’s Disease. Cell 162:516–26Google Scholar
  21. 21.
    Wexler NS, Lorimer J, Porter J et al (2004) Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci U S A 101:3498–3503PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR (2004) Group IHsDC. A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin Genet 65:267–277PubMedCrossRefGoogle Scholar
  23. 23.
    Aylward EH, Nopoulos PC, Ross CA et al (2011) Longitudinal change in regional brain volumes in prodromal Huntington disease. J Neurol Neurosurg Psychiatry 82:405–410PubMedCrossRefGoogle Scholar
  24. 24.
    Rosenblatt A, Kumar BV, Mo A, Welsh CS, Margolis RL, Ross CA (2012) Age, CAG repeat length, and clinical progression in Huntington’s disease. Mov Disord 27:272–276PubMedCrossRefGoogle Scholar
  25. 25.
    Tabrizi SJ, Scahill RI, Owen G, et al (2013) Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: analysis of 36-month observational data. Lancet NeurolGoogle Scholar
  26. 26.
    Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90:905–981PubMedCrossRefGoogle Scholar
  27. 27.
    Halliday GM, McRitchie DA, Macdonald V, Double KL, Trent RJ, McCusker E (1998) Regional specificity of brain atrophy in Huntington’s disease. Exp Neurol 154:663–672PubMedCrossRefGoogle Scholar
  28. 28.
    Hughes A, Jones L (2014) Pathogenic mechanisms in Huntington’s disease. In: Bates GP, Tabrizi SJ, Jones L (eds) Huntington’s Disease, 4th edn. Oxford University PressGoogle Scholar
  29. 29.
    Sathasivam K, Neueder A, Gipson TA et al (2013) Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc Natl Acad Sci U S A 110:2366–2370PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Mangiarini L, Sathasivam K, Seller M et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506CrossRefPubMedGoogle Scholar
  31. 31.
    Barbaro BA, Lukacsovich T, Agrawal N et al (2015) Comparative study of naturally occurring huntingtin fragments in Drosophila points to exon 1 as the most pathogenic species in Huntington’s disease. Hum Mol Genet 24:913–925PubMedCrossRefGoogle Scholar
  32. 32.
    Sun CS, Lee CC, Li YN et al (2015) Conformational switch of polyglutamine-expanded huntingtin into benign aggregates leads to neuroprotective effect. Sci Rep 5:14992PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Arrasate M, Finkbeiner S (2012) Protein aggregates in Huntington’s disease. Exp Neurol 238:1–11PubMedCrossRefGoogle Scholar
  34. 34.
    Zuccato C, Marullo M, Conforti P, MacDonald ME, Tartari M, Cattaneo E (2008) Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington’s disease. Brain Pathol 18:225–238PubMedCrossRefGoogle Scholar
  35. 35.
    Steffan JS, Kazantsev A, Spasic-Boskovic O et al (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci U S A 97:6763–6768PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Zuccato C, Tartari M, Crotti A et al (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 35:76–83PubMedCrossRefGoogle Scholar
  37. 37.
    Hodges A, Strand AD, Aragaki AK et al (2006) Regional and cellular gene expression changes in human Huntington’s disease brain. Hum Mol Genet 15:965–977PubMedCrossRefGoogle Scholar
  38. 38.
    Butler R, Bates GP (2006) Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nat Rev Neurosci 7:784–796PubMedCrossRefGoogle Scholar
  39. 39.
    Pavese N, Gerhard A, Tai YF et al (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66:1638–1643PubMedCrossRefGoogle Scholar
  40. 40.
    Tai YF, Pavese N, Gerhard A et al (2007) Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 130:1759–1766PubMedCrossRefGoogle Scholar
  41. 41.
    Crotti A, Benner C, Kerman BE et al (2014) Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci 17:513–521PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Björkqvist M, Wild EJ, Thiele J et al (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med 205:1869–1877PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Pecho-Vrieseling E, Rieker C, Fuchs S et al (2014) Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons. Nat Neurosci 17:1064–1072PubMedCrossRefGoogle Scholar
  44. 44.
    Cicchetti F, Lacroix S, Cisbani G et al (2014) Mutant huntingtin is present in neuronal grafts in huntington disease patients. Ann Neurol 76:31–42PubMedCrossRefGoogle Scholar
  45. 45.
    Pardo R, Molina-Calavita M, Poizat G, Keryer G, Humbert S, Saudou F (2010) pARIS-htt: an optimised expression platform to study huntingtin reveals functional domains required for vesicular trafficking. Mol Brain 3:17PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Gauthier LR, Charrin BC, Borrell-Pagès M et al (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118:127–138PubMedCrossRefGoogle Scholar
  47. 47.
    Roux JC, Zala D, Panayotis N, Borges-Correia A, Saudou F, Villard L (2012) Modification of Mecp2 dosage alters axonal transport through the Huntingtin/Hap1 pathway. Neurobiol Dis 45:786–795PubMedCrossRefGoogle Scholar
  48. 48.
    Li H, Wyman T, Yu ZX, Li SH, Li XJ (2003) Abnormal association of mutant huntingtin with synaptic vesicles inhibits glutamate release. Hum Mol Genet 12:2021–2030PubMedCrossRefGoogle Scholar
  49. 49.
    Jin YN, Johnson GV (2010) The interrelationship between mitochondrial dysfunction and transcriptional dysregulation in Huntington disease. J Bioenerg Biomembr 42:199–205PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Siddiqui A, Rivera-Sánchez S, MeR Castro et al (2012) Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in Huntington’s disease. Free Radic Biol Med 53:1478–1488PubMedCrossRefGoogle Scholar
  51. 51.
    Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321:168–171PubMedCrossRefGoogle Scholar
  52. 52.
    Joshi PR, Wu NP, André VM et al (2009) Age-dependent alterations of corticostriatal activity in the YAC128 mouse model of Huntington disease. J Neurosci 29:2414–2427PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Benn CL, Slow EJ, Farrell LA et al (2007) Glutamate receptor abnormalities in the YAC128 transgenic mouse model of Huntington’s disease. Neuroscience 147:354–372PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Huang SS, He J, Zhao DM, Xu XY, Tan HP, Li H (2010) Effects of mutant huntingtin on mGluR5-mediated dual signaling pathways: implications for therapeutic interventions. Cell Mol Neurobiol 30:1107–1115PubMedCrossRefGoogle Scholar
  55. 55.
    Tong X, Ao Y, Faas GC et al (2014) Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 17:694–703PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Bennett EJ, Shaler TA, Woodman B et al (2007) Global changes to the ubiquitin system in Huntington’s disease. Nature 448:704–708PubMedCrossRefGoogle Scholar
  57. 57.
    Martinez-Vicente M, Talloczy Z, Wong E et al (2010) Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci 13:567–576PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Qi L, Zhang XD, Wu JC et al (2012) The role of chaperone-mediated autophagy in huntingtin degradation. PLoS ONE 7:e46834PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kennedy L, Evans E, Chen CM et al (2003) Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis. Hum Mol Genet 12:3359–3367PubMedCrossRefGoogle Scholar
  60. 60.
    Swami M, Hendricks AE, Gillis T et al (2009) Somatic expansion of the Huntington’s disease CAG repeat in the brain is associated with an earlier age of disease onset. Hum Mol Genet 18:3039–3047PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Dragileva E, Hendricks A, Teed A et al (2009) Intergenerational and striatal CAG repeat instability in Huntington’s disease knock-in mice involve different DNA repair genes. Neurobiol Dis 33:37–47PubMedCrossRefGoogle Scholar
  62. 62.
    Bates GP, Dorsey R, Gusella JF et al (2015) Huntington disease. Nat Rev Dis Primers 1:15005PubMedCrossRefGoogle Scholar
  63. 63.
    Tabrizi SJ, Reilmann R, Roos RA et al (2012) Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol 11:42–53PubMedCrossRefGoogle Scholar
  64. 64.
    Ross CA, Aylward EH, Wild EJ et al (2014) Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 10:204–216PubMedCrossRefGoogle Scholar
  65. 65.
    Kieburtz K, Penney JB, Corno P, Ranen N, Shoulson I, Feigin A, Abwender D et al (2001) Unified Huntington’s disease rating scale: reliability and consistency. Huntington Study Group. Mov Disord 11:136–142Google Scholar
  66. 66.
    Paulsen JS, Langbehn DR, Stout JC et al (2008) Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry 79:874–880PubMedCrossRefGoogle Scholar
  67. 67.
    van Duijn E, Kingma EM, van der Mast RC (2007) Psychopathology in verified Huntington’s disease gene carriers. J Neuropsychiatry Clin Neurosci 19:441–448PubMedCrossRefGoogle Scholar
  68. 68.
    Craufurd D, Snowden J (2002) Neuropsychological and neuropsychiatric aspects of Huntington’s disease, in Huntington’s disease. In: PS H (ed) Huntington’s disease. Oxford Medical Publications, OxfordGoogle Scholar
  69. 69.
    Novak MJ, Tabrizi SJ (2010) Huntington’s disease. BMJ 340:c3109PubMedCrossRefGoogle Scholar
  70. 70.
    Lanska DJ, Lanska MJ, Lavine L, Schoenberg BS (1988) Conditions associated with Huntington’s disease at death. A case-control study. Arch Neurol 45:878–880PubMedCrossRefGoogle Scholar
  71. 71.
    Paulsen JS, Hoth KF, Nehl C, Stierman L (2005) Critical periods of suicide risk in Huntington’s disease. Am J Psychiatry 162:725–731PubMedCrossRefGoogle Scholar
  72. 72.
    Lipe H, Schultz A, Bird TD (1993) Risk factors for suicide in Huntingtons disease: a retrospective case controlled study. Am J Med Genet 48:231–233PubMedCrossRefGoogle Scholar
  73. 73.
    Videnovic A, Leurgans S, Fan W, Jaglin J, Shannon KM (2009) Daytime somnolence and nocturnal sleep disturbances in Huntington disease. Parkinsonism. Relat Disord 15:471–474CrossRefGoogle Scholar
  74. 74.
    van der Burg JM, Björkqvist M, Brundin P (2009) Beyond the brain: widespread pathology in Huntington’s disease. Lancet Neurol 8:765–774PubMedCrossRefGoogle Scholar
  75. 75.
    Myers RH, Sax DS, Koroshetz WJ et al (1991) Factors associated with slow progression in Huntington’s disease. Arch Neurol 48:800–804PubMedCrossRefGoogle Scholar
  76. 76.
    Andrew SE, Goldberg YP, Kremer B et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4:398–403PubMedCrossRefGoogle Scholar
  77. 77.
    Craufurd D, MacLeod R, Frontali M, et al (2014) Diagnostic genetic testing for Huntington’s disease. Pract NeurolGoogle Scholar
  78. 78.
    Wild EJ, Mudanohwo EE, Sweeney MG et al (2008) Huntington’s disease phenocopies are clinically and genetically heterogeneous. Mov Disord 23:716–720PubMedCrossRefGoogle Scholar
  79. 79.
    Hensman Moss DJ, Poulter M, Beck J et al (2014) C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology 82:292–299PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Novak MJ, Tabrizi SJ (2011) Huntington’s disease: clinical presentation and treatment. Int Rev Neurobiol 98:297–323PubMedCrossRefGoogle Scholar
  81. 81.
    Bonelli RM, Hofmann P (2007) A systematic review of the treatment studies in Huntington’s disease since 1990. Expert Opin Pharmacother 8:141–153PubMedCrossRefGoogle Scholar
  82. 82.
    Frank S (2014) Treatment of Huntington’s disease. Neurotherapeutics 11:153–160PubMedCrossRefGoogle Scholar
  83. 83.
    Group HS (2006) Tetrabenazine as antichorea therapy in Huntington disease: a randomized controlled trial. Neurology 66:366–372CrossRefGoogle Scholar
  84. 84.
    Guay DR (2010) Tetrabenazine, a monoamine-depleting drug used in the treatment of hyperkinetic movement disorders. Am J Geriatr Pharmacother 8:331–373PubMedCrossRefGoogle Scholar
  85. 85.
    Mestre T, Ferreira J, Coelho MM, Rosa M, Sampaio C (2009) Therapeutic interventions for symptomatic treatment in Huntington’s disease. Cochrane Database Syst Rev CD006456Google Scholar
  86. 86.
    Craufurd D, Tyler A (1992) Predictive testing for Huntington’s disease: protocol of the UK Huntington’s Prediction Consortium. J Med Genet 29:915–918PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Went L (1990) Ethical issues policy statement on Huntington’s disease molecular genetics predictive test. International Huntington Association. World Federation of Neurology. J Med Genet 27:34–38PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Guidelines for the molecular genetics predictive test in Huntington’s disease. International Huntington Association (IHA) and the World Federation of Neurology (WFN) Research Group on Huntington’s Chorea. Neurology 1994;44:1533–6Google Scholar
  89. 89.
    Semaka A, Hayden MR (2014) Evidence-based genetic counselling implications for Huntington disease intermediate allele predictive test results. Clin Genet 85:303–311PubMedCrossRefGoogle Scholar
  90. 90.
    Harper PS, Lim C, Craufurd D (2000) Ten years of presymptomatic testing for Huntington’s disease: the experience of the UK Huntington’s Disease Prediction Consortium. J Med Genet 37:567–571PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Keiser MS, Kordasiewicz HB, McBride JL (2016) Gene suppression strategies for dominantly inherited neurodegenerative diseases: lessons from Huntington’s disease and spinocerebellar ataxia. Hum Mol Genet 25:53–64CrossRefGoogle Scholar
  92. 92.
    Harper SQ, Staber PD, He X et al (2005) RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A 102:5820–5825PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Stanek LM, Sardi SP, Mastis B et al (2014) Silencing mutant huntingtin by adeno-associated virus-mediated RNA interference ameliorates disease manifestations in the YAC128 mouse model of Huntington’s disease. Hum Gene Ther 25:461–474PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Kordasiewicz HB, Stanek LM, Wancewicz EV et al (2012) Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 74:1031–1044PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    McBride JL, Pitzer MR, Boudreau RL et al (2011) Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington’s disease. Mol Ther 19:2152–2162PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Grondin R, Kaytor MD, Ai Y et al (2012) Six-month partial suppression of Huntingtin is well tolerated in the adult rhesus striatum. Brain 135:1197–1209PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Datson NA, González-Barriga A, Kourkouta E et al (2017) The expanded CAG repeat in the huntingtin gene as target for therapeutic RNA modulation throughout the HD mouse brain. PLoS ONE 12:e0171127PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Pfister EL, Kennington L, Straubhaar J et al (2009) Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington’s disease patients. Curr Biol 19:774–778PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Miller JRC, Pfister EL, Liu W et al (2017) Allele-selective suppression of mutant Huntingtin in primary human blood cells. Sci Rep 7:46740PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Southwell AL, Skotte NH, Kordasiewicz HB et al (2014) In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides. Mol Ther 22:2093–2106PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Carroll JB, Warby SC, Southwell AL et al (2011) Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene/allele-specific silencing of mutant huntingtin. Mol Ther 19:2178–2185PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Cox DB, Platt RJ, Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Med 21:121–131PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Shin JW, Kim KH, Chao MJ et al (2016) Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet 25:4566–4576PubMedGoogle Scholar
  104. 104.
    Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of IONIS-HTTRx in Patients With Early Manifest Huntington’s Disease. NCT02519036. Aug 1st 2015Google Scholar
  105. 105.
    Miller TM, Pestronk A, David W et al (2013) An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol 12:435–442PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Finkel RS, Chiriboga CA, Vajsar J et al (2016) Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388:3017–3026PubMedCrossRefGoogle Scholar
  107. 107.
    Di Pardo A, Maglione V, Alpaugh M et al (2012) Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice. Proc Natl Acad Sci U S A 109:3528–3533PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Süssmuth SD, Haider S, Landwehrmeyer GB et al (2015) An exploratory double-blind, randomized clinical trial with selisistat, a SirT1 inhibitor, in patients with Huntington’s disease. Br J Clin Pharmacol 79:465–476PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Giampà C, Laurenti D, Anzilotti S, Bernardi G, Menniti FS, Fusco FR (2010) Inhibition of the striatal specific phosphodiesterase PDE10A ameliorates striatal and cortical pathology in R6/2 mouse model of Huntington’s disease. PLoS ONE 5:e13417PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Health NIo. A Phase 2, Double-Blind Randomized, Sequential Treatment Group, Placebo-Controlled Study To Evaluate The Safety, Tolerability And Brain Cortico-Striatal Function Of 2 Doses Of PF-02545920 In Subjects With Early Huntington’s Disease. Pfizer; 2014Google Scholar
  111. 111.
    Simmons DA, Belichenko NP, Yang T et al (2013) A small molecule TrkB ligand reduces motor impairment and neuropathology in R6/2 and BACHD mouse models of Huntington’s disease. J Neurosci 33:18712–18727PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Todd D, Gowers I, Dowler SJ et al (2014) A monoclonal antibody TrkB receptor agonist as a potential therapeutic for Huntington’s disease. PLoS ONE 9:e87923PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Verny C, Bachoud-Lévi AC, Durr A et al (2017) A randomized, double-blind, placebo-controlled trial evaluating cysteamine in Huntington’s disease. Mov Disord 32:932–936PubMedCrossRefGoogle Scholar
  114. 114.
    Zwilling D, Huang SY, Sathyasaikumar KV et al (2011) Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145:863–874PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Beaumont V, Mrzljak L, Dijkman U et al (2016) The novel KMO inhibitor CHDI-340246 leads to a restoration of electrophysiological alterations in mouse models of Huntington’s disease. Exp Neurol 282:99–118PubMedCrossRefGoogle Scholar
  116. 116.
    Brück W, Pförtner R, Pham T et al (2012) Reduced astrocytic NF-κB activation by laquinimod protects from cuprizone-induced demyelination. Acta Neuropathol 124:411–424PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Comi G, Jeffery D, Kappos L et al (2012) Placebo-controlled trial of oral laquinimod for multiple sclerosis. N Engl J Med 366:1000–1009PubMedCrossRefGoogle Scholar
  118. 118.
    A Clinical Study in Subjects With Huntington’s Disease to Assess the Efficacy and Safety of Three Oral Doses of Laquinimod (LEGATO-HD). Teva Branded Pharmaceutical Products, R&D Inc. 2016 ongoingGoogle Scholar
  119. 119.
    Jin J, Albertz J, Guo Z et al (2013) Neuroprotective effects of PPAR-γ agonist rosiglitazone in N171-82Q mouse model of Huntington’s disease. J Neurochem 125:410–419PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Wild EJ, Tabrizi SJ (2014) Targets for future clinical trials in Huntington’s disease: What’s in the pipeline? Mov Disord 29:1434–1445PubMedCrossRefGoogle Scholar
  121. 121.
    Miller BR, Dorner JL, Shou M et al (2008) Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience 153:329–337PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Sontag EM, Joachimiak LA, Tan Z et al (2013) Exogenous delivery of chaperonin subunit fragment ApiCCT1 modulates mutant Huntingtin cellular phenotypes. Proc Natl Acad Sci U S A 110:3077–3082PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Labbadia J, Novoselov SS, Bett JS et al (2012) Suppression of protein aggregation by chaperone modification of high molecular weight complexes. Brain 135:1180–1196PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Mielcarek M, Landles C, Weiss A et al (2013) HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS Biol 11:e1001717PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Barker RA, Mason SL, Harrower TP et al (2013) The long-term safety and efficacy of bilateral transplantation of human fetal striatal tissue in patients with mild to moderate Huntington’s disease. J Neurol Neurosurg Psychiatry 84:657–665PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Reuter I, Tai YF, Pavese N et al (2008) Long-term clinical and positron emission tomography outcome of fetal striatal transplantation in Huntington’s disease. J Neurol Neurosurg Psychiatry 79:948–951PubMedCrossRefGoogle Scholar
  127. 127.
    Bachoud-Lévi AC, Rémy P, Nguyen JP et al (2000) Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 356:1975–1979PubMedCrossRefGoogle Scholar
  128. 128.
    Bachoud-Lévi AC, Gaura V, Brugières P et al (2006) Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol 5:303–309PubMedCrossRefGoogle Scholar
  129. 129.
    Capetian P, Knoth R, Maciaczyk J et al (2009) Histological findings on fetal striatal grafts in a Huntington’s disease patient early after transplantation. Neuroscience 160:661–675PubMedCrossRefGoogle Scholar
  130. 130.
    Gallina P, Paganini M, Lombardini L et al (2010) Human striatal neuroblasts develop and build a striatal-like structure into the brain of Huntington’s disease patients after transplantation. Exp Neurol 222:30–41PubMedCrossRefGoogle Scholar
  131. 131.
    Hauser RA, Furtado S, Cimino CR et al (2002) Bilateral human fetal striatal transplantation in Huntington’s disease. Neurology 58:687–695PubMedCrossRefGoogle Scholar
  132. 132.
    Wijeyekoon R, Barker RA (2011) The current status of neural grafting in the treatment of Huntington’s disease. A Review. Front Integr Neurosci 5:78PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Mestre T, Ferreira J, Coelho MM, Rosa M, Sampaio C (2009) Therapeutic interventions for disease progression in Huntington’s disease. Cochrane Database Syst Rev CD006455Google Scholar
  134. 134.
    Announcement of 2CARE Early Study Closure. http://huntingtonstudygroup.org/tag/2care/2014
  135. 135.
    Group HS nnouncement of CREST-E Early Study Closure. http://huntingtonstudygroup.org/tag/crest-e/2014
  136. 136.
    Investigators HSGH (2013) A randomized, double-blind, placebo-controlled trial of pridopidine in Huntington’s disease. Mov Disord 28:1407–1415CrossRefGoogle Scholar
  137. 137.
    de Yebenes JG, Landwehrmeyer B, Squitieri F et al (2011) Pridopidine for the treatment of motor function in patients with Huntington’s disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol 10:1049–1057PubMedCrossRefGoogle Scholar
  138. 138.
    Reilmann R, AM, Landwehrmeyer G, Kieburtz K, Grachev I, Eyal E, Savola J, Borowsky B, Papapetropoulos S, Hayden M (2017) Efficacy, safety, and tolerability of pridopidine in Huntington disease (HD): results from the phase ii dose-ranging study, pride-HD. In: 21st international congress of parkinson’s disease and movement disorders, 2017, Vancouver, BC, Mov Disord. 32(suppl 2), http://www.mdsabstracts.org/abstract/efficacy-safety-and-tolerability-of-pridopidine-in-huntington-disease-hd-results-from-the-phase-ii-dose-ranging-study-pride-hd/
  139. 139.
    Frank S, Testa CM, Stamler D et al (2016) Effect of deutetrabenazine on chorea among patients with Huntington disease: a randomized clinical trial. JAMA 316:40–50PubMedCrossRefGoogle Scholar
  140. 140.
    Frank S, Stamler D, Kayson E et al (2017) Safety of converting from tetrabenazine to deutetrabenazine for the treatment of chorea. JAMA Neurol 74:977–982PubMedCrossRefGoogle Scholar
  141. 141.
    Deep Brain Stimulation (DBS) of the Globus Pallidus (GP) in Huntington’s Disease (HD) (HD-DBS). 2015, ongoingGoogle Scholar
  142. 142.
    Investigators HSGRH. Safety, tolerability, and efficacy of PBT2 in Huntington’s disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2015;14:39–47Google Scholar
  143. 143.
    Effects of EGCG (Epigallocatechin Gallate) in Huntington’s Disease (ETON-Study) (ETON)Google Scholar
  144. 144.
    Neuroleptic and Huntington Disease Comparison of: Olanzapine, la Tetrabenazine and Tiapride (NEUROHDGoogle Scholar
  145. 145.
    Tang CC, Feigin A, Ma Y et al (2013) Metabolic network as a progression biomarker of premanifest Huntington’s disease. J Clin Invest 123:4076–4088PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Sturrock A, Laule C, Decolongon J et al (2010) Magnetic resonance spectroscopy biomarkers in premanifest and early Huntington disease. Neurology 75:1702–1710PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Stout JC, Queller S, Baker KN et al (2014) HD-CAB: a cognitive assessment battery for clinical trials in Huntington’s disease 1,2,3. Mov Disord 29:1281–1288PubMedCrossRefGoogle Scholar
  148. 148.
    Wild EJ, Boggio R, Langbehn D et al (2015) Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. J Clin Invest 125:1979–1986PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Rodrigues FB, Byrne L, McColgan P et al (2016) Cerebrospinal fluid total tau concentration predicts clinical phenotype in Huntington’s disease. J Neurochem 139:22–25PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Byrne LM, Rodrigues FB, Blennow K et al (2017) Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington’s disease: a retrospective cohort analysis. Lancet Neurol 16:601–609PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.UCL Huntington’s Disease Centre, Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK

Personalised recommendations