Computational Vision and Bio Inspired Computing pp 512-522 | Cite as
Query by Example—Retrieval of Images Using Object Segmentation and Distance Measure
Conference paper
First Online:
- 1.4k Downloads
Abstract
Image segmentation is the process of extracting object and regions of interest which have applications in computer vision, object detection, classification of retrieval. Many researchers have developed algorithms for segmenting objects from digital images. This paper is an attempt to retrieve images based on existing segmentation algorithms and distance measures. A diverse dataset consisting of images of various categories has been used for experimentation and this work suggests the best segmentation algorithm for retrieving the best match for given query images using distance measures.
Keywords
Global threshold Multilevel threshold Active contour model Super pixels CCA Eucledian distanceReferences
- 1.Nilima, S., Dhanesh, P., Anjali, J.: Review on image segmentation clustering and boundary encoding. Int. J. Innovative Res. Sci. Eng. Technol. 2(11), 6309–6314 (2013). ISSN 2319-8753Google Scholar
- 2.Zaitoun, N.M., Aqel, M.J.: Survey on image segmentation techniques. In: International Conference on Communication, Management and Information Technology (ICCMIT), pp. 797–896. (2015)Google Scholar
- 3.Radhakrishna, A., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)Google Scholar
- 4.Khan, W.: Image segmentation techniques: a survey. J. Image Graph. 1(4), 166–170 (2013)Google Scholar
- 5.Tunga, S., Jayadevappa, D., Gururaj, C.: A comparative study of content based image retrieval trends. Int. J. Image Process. (IJIP) 9(3), 127–155 (2015)Google Scholar
- 6.da Silva Junior, J.A., Marcal, R.E., Batista, M.A.: Image retrieval: importance and applications. In: X Workshop de Vis-ao Computacional, pp. 311–315 (2014)Google Scholar
- 7.Abood, Z.I, Mushin, I.J, Tawfiq, N.J.: Content-based image retrieval (CBIR) using hybrid technique. Int. J. Comput. Appl. 83(12), 17–24 (2013)Google Scholar
- 8.Bagyammal, T., Parameshwaran, L.: Context based image retrieval using Image features. Int. J. Adv. Inf. Eng. Technol. (IJAIET) 9(9), 27–37 (2015)Google Scholar
- 9.Chary, R., Rajya Lakshmi, D., Sunitha, K.V.N.: Feature extraction methods for color image similarity. arXiv preprint arXiv:1204.2336(2012)
- 10.Kondekar, V.H., Kolkure, V.S., Kore S.N.: Image retrieval techniques based on image features: a state of art approach for CBIR. Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 7(1), 69–76 (2010)Google Scholar
- 11.Jogendra kumar, M., Raj Kumar, G.V.S., Vijay Kumar, R.: Review on image segmentation technique. Int. J. Sci. Res. Eng. Technol. (IJSRET) 3(6) (2014). ISSN 2278-0882Google Scholar
- 12.Ramadevi, Y., Sridevi, T., Poornima, B., Kalyani, B.: Segmentation and object recognition using edge detection techniques. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 2(6), 153–161 (2010)Google Scholar
- 13.Liao, Ping-Sung, Chen, Tse-Sheng, Chung, Pau-Choo: A fast algorithm for multilevel thresholding. J. Inf. Sci. Eng. 17(5), 713–727 (2001)Google Scholar
- 14.Karthika, R., Parameswaran, L.: Study of Gabor wavelet for face recognition invariant to pose and orientation. In: Proceedings of the International Conference on Soft Computing Systems, Springer India (2016)Google Scholar
- 15.Arbela, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchial image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)Google Scholar
- 16.Arora, S., Acharya, J., Verma, A., Panigrahi, P.K.: Multilevel thresholding for image segmentation through a fast statistical recursive algorithms. Pattern Recognit. Lett. 29, 119–125 (2007)Google Scholar
- 17.Kondekar, Vipul, et al.: Image retrieval techniques based on image features: a state of art approach for cbir. Proceedings of the International Conference and Workshop on Emerging Trends in Technology. ACM, (2010) Google Scholar
- 18.Otsu, N.: A threshold selection method from gray—level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)Google Scholar
- 19.Luessi, M., Eichmann, M., Katsaggelos, A.K.: Framework for efficient optimal multilevel image thresholding. J. Electron. Imaging 18, 1–10 (2009)Google Scholar
- 20.Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vision 1, 321–331 (1987)Google Scholar
- 21.Xu, X., et al.: Characteristic analysis of Otsu threshold and its applications. Pattern Recognit. Lett. 32(7), 956–961 (2011)Google Scholar
- 22.Columbia University Image Library (COIL-100). http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
Copyright information
© Springer International Publishing AG 2018