Advertisement

Query by Example—Retrieval of Images Using Object Segmentation and Distance Measure

  • S. SathyaEmail author
  • Latha Parameswaran
  • R. Karthika
Conference paper
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 28)

Abstract

Image segmentation is the process of extracting object and regions of interest which have applications in computer vision, object detection, classification of retrieval. Many researchers have developed algorithms for segmenting objects from digital images. This paper is an attempt to retrieve images based on existing segmentation algorithms and distance measures. A diverse dataset consisting of images of various categories has been used for experimentation and this work suggests the best segmentation algorithm for retrieving the best match for given query images using distance measures.

Keywords

Global threshold Multilevel threshold Active contour model Super pixels CCA Eucledian distance 

References

  1. 1.
    Nilima, S., Dhanesh, P., Anjali, J.: Review on image segmentation clustering and boundary encoding. Int. J. Innovative Res. Sci. Eng. Technol. 2(11), 6309–6314 (2013). ISSN 2319-8753Google Scholar
  2. 2.
    Zaitoun, N.M., Aqel, M.J.: Survey on image segmentation techniques. In: International Conference on Communication, Management and Information Technology (ICCMIT), pp. 797–896. (2015)Google Scholar
  3. 3.
    Radhakrishna, A., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)Google Scholar
  4. 4.
    Khan, W.: Image segmentation techniques: a survey. J. Image Graph. 1(4), 166–170 (2013)Google Scholar
  5. 5.
    Tunga, S., Jayadevappa, D., Gururaj, C.: A comparative study of content based image retrieval trends. Int. J. Image Process. (IJIP) 9(3), 127–155 (2015)Google Scholar
  6. 6.
    da Silva Junior, J.A., Marcal, R.E., Batista, M.A.: Image retrieval: importance and applications. In: X Workshop de Vis-ao Computacional, pp. 311–315 (2014)Google Scholar
  7. 7.
    Abood, Z.I, Mushin, I.J, Tawfiq, N.J.: Content-based image retrieval (CBIR) using hybrid technique. Int. J. Comput. Appl. 83(12), 17–24 (2013)Google Scholar
  8. 8.
    Bagyammal, T., Parameshwaran, L.: Context based image retrieval using Image features. Int. J. Adv. Inf. Eng. Technol. (IJAIET) 9(9), 27–37 (2015)Google Scholar
  9. 9.
    Chary, R., Rajya Lakshmi, D., Sunitha, K.V.N.: Feature extraction methods for color image similarity. arXiv preprint arXiv:1204.2336(2012)
  10. 10.
    Kondekar, V.H., Kolkure, V.S., Kore S.N.: Image retrieval techniques based on image features: a state of art approach for CBIR. Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 7(1), 69–76 (2010)Google Scholar
  11. 11.
    Jogendra kumar, M., Raj Kumar, G.V.S., Vijay Kumar, R.: Review on image segmentation technique. Int. J. Sci. Res. Eng. Technol. (IJSRET) 3(6) (2014). ISSN 2278-0882Google Scholar
  12. 12.
    Ramadevi, Y., Sridevi, T., Poornima, B., Kalyani, B.: Segmentation and object recognition using edge detection techniques. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 2(6), 153–161 (2010)Google Scholar
  13. 13.
    Liao, Ping-Sung, Chen, Tse-Sheng, Chung, Pau-Choo: A fast algorithm for multilevel thresholding. J. Inf. Sci. Eng. 17(5), 713–727 (2001)Google Scholar
  14. 14.
    Karthika, R., Parameswaran, L.: Study of Gabor wavelet for face recognition invariant to pose and orientation. In: Proceedings of the International Conference on Soft Computing Systems, Springer India (2016)Google Scholar
  15. 15.
    Arbela, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchial image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)Google Scholar
  16. 16.
    Arora, S., Acharya, J., Verma, A., Panigrahi, P.K.: Multilevel thresholding for image segmentation through a fast statistical recursive algorithms. Pattern Recognit. Lett. 29, 119–125 (2007)Google Scholar
  17. 17.
    Kondekar, Vipul, et al.: Image retrieval techniques based on image features: a state of art approach for cbir. Proceedings of the International Conference and Workshop on Emerging Trends in Technology. ACM, (2010)    Google Scholar
  18. 18.
    Otsu, N.: A threshold selection method from gray—level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)Google Scholar
  19. 19.
    Luessi, M., Eichmann, M., Katsaggelos, A.K.: Framework for efficient optimal multilevel image thresholding. J. Electron. Imaging 18, 1–10 (2009)Google Scholar
  20. 20.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vision 1, 321–331 (1987)Google Scholar
  21. 21.
    Xu, X., et al.: Characteristic analysis of Otsu threshold and its applications. Pattern Recognit. Lett. 32(7), 956–961 (2011)Google Scholar
  22. 22.
    Columbia University Image Library (COIL-100). http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php

Copyright information

© Springer International Publishing AG  2018

Authors and Affiliations

  1. 1.Department of Computer Science and Engineering, Department of Electronics and Communication EngineeringAmrita School of Engineering, Amrita Vishwa VidyapeethamCoimbatoreIndia

Personalised recommendations