Advertisement

Air Pollution Modelling from Meteorological Parameters Using Artificial Neural Network

  • Sateesh N. HosamaneEmail author
  • G. P. Desai
Conference paper
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 28)

Abstract

The aim of this study is to develop neural network air quality prediction model for PM10 (particle whose diameter is less the 10 µm), NO2 and SO2. A multilayer neural network model with a hidden recurrent layer is used to predict pollutant concentrations at four monitoring sites in Belagavi city of Karnataka State, India. The Levenberg Marquardt algorithm is used to train the network. A combination of input variables were investigated taking into the predictability of meteorological input variables and the study of model performance. The meteorological variables air temperature, wind speed, wind direction, rainfall and relative humidity were considered as input variables for this study. The results show very good agreement between measured and predicted pollutant concentrations. The performance of the developed model was assessed through performance index. The models developed have good prediction performance (>85%) for all the pollutants. The proposed models were predicted pollutant concentration with relatively good accuracy and outputs were proven to be satisfactory by measuring of the goodness of fit and by mean absolute percentage error.

Keywords

ANN Air pollution Modelling Prediction 

References

  1. 1.
    Dimitriou, K., Paschalidou, A.K., Kassomenos, P.A.: Assessing air quality with regards to its effect on human health in the European Union through air quality indices. Ecol. Ind. 27, 108–115 (2013)CrossRefGoogle Scholar
  2. 2.
    Pope III, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D.: Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287(9), 1132–1141 (2002)CrossRefGoogle Scholar
  3. 3.
    Karatzas, K.D., Kaltsatos, S.: Air pollution modelling with the aid of computational intelligence methods in Thessaloniki. Greece. Simul. Model. Pract. Theor. 15(10), 1310–1319 (2007)CrossRefGoogle Scholar
  4. 4.
    Deleawe, S., Kusznir, J., Lamb, B., Cook, D.J.: Predicting air quality in smart environments. J. Ambient Intell. Smart Environ. 2(2), 145–154 (2010)Google Scholar
  5. 5.
    Gardner, M.W., Dorling, S.R.: Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmos. Environ. 33(5), 709–719 (1999)CrossRefGoogle Scholar
  6. 6.
    Viotti, P., Liuti, G., Di Genova, P.: Atmospheric urban pollution: applications of an artificial neural network (ANN) to the city of Perugia. Ecol. Model. 148(1), 27–46 (2002)CrossRefGoogle Scholar
  7. 7.
    Karaca, F., Alagha, O., Ertürk, F.: Application of inductive learning: air pollution forecast in Istanbul. Turkey. Intell. Autom. Soft Comput. 11(4), 207–216 (2005)CrossRefGoogle Scholar
  8. 8.
    Athanasiadis, I.N., Karatzas, K., Mitkas, P.: Contemporary air quality forecasting methods: a comparative analysis between classification algorithms and statistical methods. In: Fifth International Conference on Urban Air Quality Measurement, Modelling and Management, Valencia, Spain (2005)Google Scholar
  9. 9.
    Kolehmainen, M., Martikainen, H., Ruuskanen, J.: Neural neworks and periodic components used in air quality forecasting. Atmos. Environ. 35(5), 815–825 (2001)CrossRefGoogle Scholar
  10. 10.
    Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H., Kolehmainen, M., Cawley, G.: Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki. Atmos. Environ. 37(32), 4539–4550 (2003)CrossRefGoogle Scholar
  11. 11.
    Rumelhart, E., Hinton, J., Williams, R.: Learning internal representations by error propagation, in parallel distributed processing: exploration in the microstructure of cognition, vol. 1. MIT press, Cambridge (1986)Google Scholar
  12. 12.
    Hertz, J.A., Krogh, A.S., Palmer, R.G.: Introduction to the theory of neural computation. Addison Wesley, Canada (1995)Google Scholar
  13. 13.
    Bishop, A.: Neural networks for pattern recognition. Oxford University Press, UK (1995)zbMATHGoogle Scholar
  14. 14.
    Fausett, L.: Neural Networks: Architectures, Algorithms, and Applications. Prentice-Hall Inc., New Jersey (1994)zbMATHGoogle Scholar
  15. 15.
    Gardner, M.W., Dorling, S.R.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos. Environ. 32(14), 2627–2636 (1998)CrossRefGoogle Scholar
  16. 16.
    Kandasamy, S., Baret, F., Verger, A., Neveux, P., Weiss, M.: A comparison of methods for smoothing and gap filling time series of remote sensing observations application to MODIS LAI products. Biogeosciences 10(6), 4055–4071 (2013)CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Niska, H., Hiltunen, T., Karppinen, A., Ruuskanen, J., Kolehmainen, M.: Evolving the neural network model for forecasting air pollution time series. Eng. Appl. Artif. Intell. 17(2), 159–167 (2004)CrossRefGoogle Scholar
  19. 19.
    Velasquez, G.: A Distributed approach to a neural network simulation program. Master’s thesis, The University of Texas at El Paso, El Paso (1998)Google Scholar
  20. 20.
    Cai, M., Yin, Y., Xie, M.: Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach. Transp. Res. Part D Transp. Environ. 14(1), 32–41 (2009)CrossRefGoogle Scholar
  21. 21.
    Akkoyunlu, A., Yetilmezsoy, K., Erturk, F., Oztemel, E.: A neural network-based approach for the prediction of urban SO2 concentrations in the Istanbul metropolitan area. Int. J. Environ. Pollut. 40(4), 301–321 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG  2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringK. L. E. DR. M. S. Sheshgiri College of Engineering and TechnologyBelagaviIndia
  2. 2.Department of Chemical EngineeringBapuji Institute of TechnologyDavanagereIndia

Personalised recommendations