Personalized Research Paper Recommender System

  • Thota Sripadh
  • Gowtham RameshEmail author
Conference paper
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 28)


Personalization is an emerging topic in the field of Research paper recommender systems and academic research. It is a technique to creative and efficient user profiles to achieve improved recommendations. Our work proposes a new user model to understand user behavior for personalization. This model initially extracts keywords based on the online behaviour of the user. The subsequent steps include concept extraction and user profile ontology construction to derive inferences and define relationships. The suggested model clearly depicts hierarchical ordering of the user’s long-term and current research interests. Furthermore, the adoption of our model contributes to improvement of recommendations.


Personalization Ontology User profile 


  1. 1.
    Linden, G., Smith, B., York, J.: recommendations: Item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)CrossRefGoogle Scholar
  2. 2.
    Seo, Y.-W., Zhang, B.-T.: A reinforcement learning agent for personalized information filtering. In: Proceedings of the 5th International Conference on Intelligent User Interfaces. ACM (2000)Google Scholar
  3. 3.
    Adomavicius, G., Tuzhilin, A.: Expert-Driven Validation of Rule-Based User Models in Personalization Application. Applications of Data Mining to Electronic Commerce, pp. 33–58. Springer, US (2001)zbMATHGoogle Scholar
  4. 4.
    Gauch, S., et al.: User profiles for personalized information access. Adapt Web 54–89 (2007) (Appendix: Springer-Author Discount)Google Scholar
  5. 5.
    Pazzani, M.J., Muramatsu, J., Billsus, D.: Syskill & Webert: Identifying interesting web sites. In: AAAI/IAAI, vol. 1 (1996)Google Scholar
  6. 6.
    Pretschner, A., Gauch, S.: Ontology based personalized search. In: Proceedingsof the 11th IEEE International Conference on Tools with Artificial Intelligence. IEEE (1999)Google Scholar
  7. 7.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J ACM (JACM) 46(5), 604–632 (1999)Google Scholar
  8. 8.
    Trajkova, J., Gauch, S.: Improving ontology-based user profiles. Coupling approaches, coupling media and coupling languages for information retrieval. LE CENTRE DE HAUTES ETUDES INTERNATIONALES D’INFORMATIQUE DOCUMENTAIRE, 2004Google Scholar
  9. 9.
    Lieberman, H.: Letizia: an agent that assists web browsing. IJCAI (1) 1995, 924–929 (1995)Google Scholar
  10. 10.
    Chen, L., Sycara, K.: WebMate: A personal agent for browsing and searching. In: Proceedings of the Second International Conference on Autonomous Agents. ACM (1998)Google Scholar
  11. 11.
    Marais, H., Bharat, K.: Supporting cooperative and personal surfing with a desktop assistant. In: Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology. ACM (1997)Google Scholar
  12. 12.
    Adar, E., Karger, D., Stein, L.A.: Haystack: Per-user information environments. In: Proceedings of the Eighth International Conference on Information and Knowledge Management. ACM (1999)Google Scholar
  13. 13.
    Dumais, S., Cutrell, E., Cadiz, J.J., Jancke, G., Sarin, R., Robbins, D.C.: Stuff I’ve seen: A system for personal information retrieval and re-use. In: ACM SIGIR Forum, 49(2), 28–35. ACM (2016)Google Scholar
  14. 14.
    Mobasher, B.: Data Mining for Web Personalization. The Adaptive Web, pp. 90–135. Springer, Berlin, Heidelberg (2007)Google Scholar
  15. 15.
    Sieg, A., Mobasher, B., Burke, R.: Inferring user’s information context from user profiles and concept hierarchies. In: Classification, Clustering, and Data Mining Applications, pp. 563–573. Springer, Berlin, Heidelberg (2004)Google Scholar
  16. 16.
    Liu, F., Yu, C., Meng, W.: Personalized web search by mapping user queries to categories. In: Proceedings of the Eleventh International Conference on Information and Knowledge Management. ACM (2002)Google Scholar
  17. 17.
    Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction from the web. In: IJCAI vol. 7, pp. 2670–2676 (2007)Google Scholar
  18. 18.
    Wu, F., Weld, D.S.: Open information extraction using Wikipedia. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics (2010)Google Scholar
  19. 19.
    Soderland, S., Roof, B., Qin, B., Xu, S., Etzioni, O.: Adapting open information extraction to domain-specific relations. AI Mag. 31(3), 93–102 (2010)Google Scholar
  20. 20.
    Venugopal, A., Ramesh, G.: A study on verbalization of OWL axioms using controlled natural language. Int. J. Appl. Eng. Res. (2015)Google Scholar
  21. 21.
    The 2012 ACM computing classification system. Retrieved November 22, 2017, from
  22. 22.
    Gensim: models.tfidfmodel – TF-IDF model. Retrieved November 22, 2017, from
  23. 23.
    Sklearn.feature_extraction.text.TfidfVectorizer — scikit-learn 0.19.1 documentation. Retrieved November 22, 2017, from
  24. 24.
    Angeli, G., Premkumar, M.J., Manning, C.D.: Leveraging linguistic structure for open domain information extraction. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics. ACL (2015)Google Scholar
  25. 25.
    Gowtham, R., Krishnamurthi, I.: PhishTackle—a web services architecture for anti-phishing. Cluster Comput. 17(3), 1051–1068 (2014)Google Scholar
  26. 26.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
  27. 27.
    Dai, A.M., Olah, C., Le, Q.V.: Document embedding with paragraph vectors. arXiv preprint arXiv:1507.07998 (2015)

Copyright information

© Springer International Publishing AG  2018

Authors and Affiliations

  1. 1.Department of Computer Science and Engineering, Amrita School of EngineeringAmrita Vishwa VidyapeethamCoimbatoreIndia

Personalised recommendations