A Study on Various Quantification Algorithms for Diabetic Retinopathy and Diabetic Maculopathy Grading

  • Parvathy Ram
  • T. R. SwapnaEmail author
Conference paper
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 28)


Diabetes also known as diabetes mellitus (DM) is a prominent disease all over the world. It is a metabolic disorder occurring due to high blood sugar levels over a prolonged period. Prolonged diabetes will cause diabetic retinopathy affects retina. Diabetes affecting macular area is called diabetic maculopathy. Developing automated systems for identification, grading and quantification of the retinal pathologies associated with DM is on the rise. There are four popular modalities that are useful for clinical diagnosis and treatment of diabetic maculopathy. They are slit-lamp biomicroscopy, color fundus images, fundus fluorescein angiograms (FFA) and optical coherence tomography (OCT). It is observed that FFA plays an vital role in the treatment of diabetic macular edema (DME). There are two major types of diabetic retinopathy: non-proliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR). NPDR shows up as retinal exudates or cotton wool spots or microvascular abnormalities or as superficial retinal hemorrhages or as microaneurysms. PDR is characterized by severe small retinal vessel damage and reduced oxygenization of retina. Here a survey on the quantification of the macular edema, retinal exudates, microaneurysms and other retinal pathologies in diabetic maculopathy and diabetic retinopathy are elaborated.


Fundus Fluorescein Angiogram Optical Coherence Tomography Diabetic Macular Edema Non-prolifertive diabetic retinopathy Proliferative diabetic retinopathy 


  1. 1.
  2. 2.
    Creel, M.J., Olson, J.A., Mchardy, K.C., Sharp, P.F., Forrester, J.V.: A Fully Automated Comparative Microaneurysm Digital Detection System. Department of Bio-medical Physics and Bio-engineering, University of Aberdeen, Foresterhill, AberdeenGoogle Scholar
  3. 3.
    Phillips, R.P., Spencer, T., Ross, P.G.B., Sharp, P.F., Forrester, J.V.: Quantification of Diabetic Maculopathy by Digital Imaging of the Fundus. Department of Ophthalmology, Department of Bio-medical Physics, Medical School, University of Aberdeen, Foresterhill, AberdeenGoogle Scholar
  4. 4.
    Ravishankar, S., Jain, A., Mittal, A.: Automated Feature Extraction for Early Detection of Diabetic Retinopathy in Fundus Images. University of Illinois at Urbana-Champaign, University of Maryland College Park, Indian Institute of Technology, MadrasGoogle Scholar
  5. 5.
    Tariq, A., Akram, M.U., Shaukat, A., Khan, S.A.: Automated detection and grading of diabetic maculopathy in digital retinal imagesGoogle Scholar
  6. 6.
    Swapna, T.R., Chakraborty, C.: Diabetic maculopathy detection using fundus fluorescein angiogram images—a review. IJRET: Int. J. Res. Eng. Technol. 03(15) (2014)Google Scholar
  7. 7.
    Esmaeili, M., Rabbani, H., Dehnavi, A.M., Dehghani, A.: A New Curvelet Transform Based Method for Extraction of Red Lesions in Digital Color Retinal Images. Department of Biomedical Engineering, Department of Ophthalmology, Isfahan University of Medical SciencesGoogle Scholar
  8. 8.
    Sekhar, S., Al-Nuaimy, W., Nandi, A.K.: Automated localization of optic disk and fovea in retinal fundus images. In: 16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, 25–29 August 2008, Copyright by EURASIPGoogle Scholar
  9. 9.
    Marin, O.,C., Ares, E., Penedo, M.G., Ortega, M., Barreira, N., Gomez-Ulla, F.: Automated Three Stage Red Lesions Detection in Digital Color Fundus Images. Grupo de Visión Artificial y Reconocimiento de Patrones University of A Coruña Campus de Elviña s/n, A Coruña, 15071, SpainGoogle Scholar
  10. 10.
    El Abbadi, N.K., Al-Saadi, E.H.: Automatic Detection of Exudates in Retinal Images. University of Kufa, Najaf, Iraq, IJCSI Int. J. Comput. Sci. Issues 10(2), No 1 (2013)Google Scholar
  11. 11.
    Welfer, D., Scharcanski, J., Marinho, D.R.: A morphological three stage approach for detecting exudates in color eye Fundus images. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 964–968 (2010)Google Scholar
  12. 12.
    Osareh, A., Mirmehdi, M., Thomas, B., Markham, R.: Automated identification of diabetic retinal exudates in digital colour images. Published by group.bmj.comGoogle Scholar
  13. 13.
    Reza, A.W., Eswaran, C., Dimyati, K.: Diagnosis of diabetic retinopathy: automatic extraction of optic disc and exudates from retinal images using marker-controlled watershed transformation. Springer Science+Business Media, LLC (2010). Received: 9 Sept 2009/Accepted: 27 Dec 2009/Published online: 29 Jan 2010Google Scholar
  14. 14.
    Sopharak, A., Uyyanonvara, B., Barman, S.: Automatic exudate detection from non-dilated diabetic retinopathy retinal images using fuzzy c-means clustering. Sensors 9, 2148–2161 (2009). doi:
  15. 15.
    Walter, T., Erginay, A., Ordoñez, R., Klein, J.: Automatic detection of microaneurysms in color fundus images. Med. Image Anal. (2008)Google Scholar
  16. 16.
    Eswaran, C., Saleh, M.D., Abdullah, J.: Projection based algorithm for detecting exudates in color fundus images. In: Proceedings of the 19th International Conference on Digital Signal Processing, 20–23 August 2014Google Scholar
  17. 17.
    Chen, X., Bu, W., Wu, X., Dai, B., Teng, Y.: A novel method for automatic hard exudates detection in color retina L images. In: Proceedings of the 2012 International Conference on Machine Learning and Cybernetics, Xian, 15–17 July 2012Google Scholar
  18. 18.
    Eadgahi, M.G.F., Pourreza, H.: Localization of hard exudates in retinal fundus image by mathematical morphology operations. J. Theor. Phys. Crypt. JTPC 1 (2012)Google Scholar
  19. 19.
    Dattaa, N.S., Banerjeeb, R., Duttac, H.S., Mukhopadhyayd, S.: Hardware based analysis on automated early detection of diabetic-retinopathy. Procedia Technol. 4, 256–260 (2012)Google Scholar
  20. 20.
    Akram et al.: Retinal images: optic disk localization and detection. In: International Conference Image Analysis and Recognition, ICIAR, Image Analysis and Recognition, pp. 40–49 (2010) Google Scholar
  21. 21.
    Zhang, X., Thibault, G., Decencière, E., Marcotegui, B., Laÿ, B., Danno, R., Cazuguel, G., Quellec, G., Lamard, M., Massin, P., Chabouis, A., Victor, Z., Erginay, A.: Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med. Image Anal. (2014)Google Scholar
  22. 22.
    Kaur, M., Kaur, M.: A hybrid approach for automatic exudates detection in eye fundus image. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 5(6) (2015)Google Scholar
  23. 23.
    Kumar, A., Gaur, A.K., Srivastava, M.: A segment based technique for detecting exudate from retinal fundus image. Procedia Technol. 6, 1–9 (2012)Google Scholar
  24. 24.
    Giancardo, L., Meriaudeau, F., Karnowski, T.P., Li, Y., Garg, S., Tobin, K.W., Chaum, E.: Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med. Image Anal. Elsevier (2012)Google Scholar
  25. 25.
    Akram, M.U., Khan, A., Iqbal, K., Butt, W.H.: Retinal images: optic disk localization and detection. In: International Conference on Image Analysis and Recognition (2010)Google Scholar
  26. 26.
    Niemeijer, M., van Ginneken, B., Staal, J., Suttorp-Schulten, M.S.A., Abràmoff, M.D.: Automatic detection of red lesions in digital color fundus photographs. IEEE Trans. Med. Imaging 24(5) (2005)Google Scholar
  27. 27.
    García, M., Sánchez, C.I., López, M.I., Díez, A., Hornero, R.: Automatic detection of red lesions in retinal images using a multilayer perceptron neural network. In: 30th Annual International IEEE EMBS Conference Vancouver, British Columbia, Canada, 20–24 Aug 2008Google Scholar
  28. 28.
    Liu, Z., Opas, C., Krishnan, S.M.: Automatic image analysis of fundus photograph. In: Proceedings—19th International Conference of the IEEE/EMBS, Chicago, IL, USA, 30 Oct–2 Nov 1997Google Scholar
  29. 29.
    Siddalingaswamy, P.C, Gopalakrishna, P.K.: Automatic localization and boundary detection of optic disc using implicit active contours. In: Int. J. Comput. Appl. (0975 – 8887), Volume 1 – No. 7 (2010)Google Scholar
  30. 30.
    Li, H., Chutatape, O.: Automated feature extraction in color retinal images by a model based approach. IEEE Trans. Biomed. Eng. 51(2) (2004)Google Scholar
  31. 31.
    Júnior, S.B., Welfer, D.: Automatic detection of microaneurysms and hemorrhages in color eye fundus images. Int. J. Comput. Sci. Inform. Technol. (IJCSIT) 5(5) (2013)Google Scholar
  32. 32.
    Mendels, F., Heneghan, C., Thiran, J.: Identification of the optic disk boundary in retinal images using active contours. Signal Processing Laboratory (LTS), Swiss Federal Institute of Technology (EPFL), semantic Scholar (2004)Google Scholar
  33. 33.
    Jadhav, M.L., Shaikh, M.Z.: Different methods for detecting & grading diabetic retinopathy using fundus images—a review. Int. J. Innovative Res. Electr. Electron. Instrum. Control Eng. 4(3) (2016)Google Scholar
  34. 34.
    Prakash, N.B., Hemalakshmi, G.R., Mary, S.I.M.: Automated grading of diabetic retinopathy stages in fundus images using SVM classifer. J. Chem. Pharm. Res. ISSN: 0975-7384Google Scholar

Copyright information

© Springer International Publishing AG  2018

Authors and Affiliations

  1. 1.Department of Computer Science and Engineering, Amrita School of EngineeringAmrita Vishwa VidyapeethamCoimbatoreIndia

Personalised recommendations