Advertisement

Segmentation of MRI Brain Images and Creation of Structural and Functional Brain Atlas

  • Hema P. MenonEmail author
  • Reshma Hiralal
  • A. Anand Kumar
  • Davidson Devasia
Conference paper
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 28)

Abstract

In this work an analysis of the different segmentation algorithms has been done, in order to select the most appropriate method for segmenting the brain into its corresponding regions. This selection is done by comparing the segmented regions with the ground truth images using measures like Dice, Precision, Recall and Score. The segmented regions are then labelled by their respective part names and used for creation of structural and functional brain atlas. This atlas would be of great use to doctors in providing assistance in disease analysis and can also be used as a teaching/learning kit.

Keywords

Segmentation Magnetic resonance imaging (MRI) images Brain atlas Level sets Thresholding Blob segmentation 

References

  1. 1.
    Lancaster, J.L., Rainey, L.H., Summerlin, J.L., Freitas, C.S., Fox, P.T., Evans, A.C., Toga, A.W., Mazziotta, J.C.: Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method. Hum. Brain Map 5, 238–242 (1997)CrossRefGoogle Scholar
  2. 2.
    Jones, A.J., Overly, C.O., Sunkin, S.M.: INNOVATION: the allen brain atlas: 5 years and beyond. Nat. Rev. Neurosci. 10, 821–828 (2009)Google Scholar
  3. 3.
    Govindan, V.K., Nair, J.J.: Automatic segmentation of MR brain images. In: Proceedings of the ICCCS International Conference on Communication, Computing and Security (ACM), NIT Rourkela (2011)Google Scholar
  4. 4.
    Renjini, H., Bhagavathi Sivakumar, P.: Comparison of automatic and interactive image segmentation methods. Int. J. Eng. Res. Technol. (IJERT) 2(6), 3162–3170 (2013)Google Scholar
  5. 5.
    Amini, L., Zadeh, S.H., Lucas, C., Gity, M.: Automatic segmentation of thalamus from brain MRI integrating fuzzy clustering and dynamic contours. IEEE Trans. Biomed. Eng. 51(5), 800–811 (2004)CrossRefGoogle Scholar
  6. 6.
    Carmichael, O., Aizenstein, H., Davis, S., Becker, J., Thompson, P., Meltzer, C., Liu, Y.: Atlas-based hippocampus segmentation in Alzheimer’ disease and mild cognitive impairment. NeuroImage 27(4), 979–990 (2005)CrossRefGoogle Scholar
  7. 7.
    Goshal, D., Acharjya, P.P.: MRI image segmentation using watershed transform. Int. J. Emerg. Technol. Adv. Eng. 2(4), 373–376 (2012)Google Scholar
  8. 8.
    Kumaravel, M., Karthik, S.K.S., Sivraj, P., Soman, K.P.: Human face image segmentation using level set methodology. Int. J. Comput. Appl. 44, 16–22 (2012)Google Scholar
  9. 9.
    Duy, N.H.M., Tuan, T.A., Duong, N.H.., Tuan, T.A., Dao, N.K., Yoshitaka, A., Kim, J.Y., Choi, S.H., Bao, P.T.: 3D-brain MRI segmentation based on improved level set by AI rules and medical knowledge combining 3 classes-EM and bayesian method. J. KIIT. 14(5), 75–88 (2016)Google Scholar
  10. 10.
    Karim, B.M.: Atlas and snakes based segmentation of organs at risk in radiotherapy in head MRIs. In: Third IEEE International Conference in Information Science and Technology, pp. 356–363 (2014)Google Scholar
  11. 11.
    Rohlfing, T., Brandt, R., Menzel, R., Maurer, C.R.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21(4), 1428–1442 (2004)CrossRefGoogle Scholar
  12. 12.
    Lancaster, J.L., Woldorff, M.G., Parsons, L.M., Liotti, M., Freitas, C.S., Rainey, L., Kochunov, P.V., Nickerson, D., Mikiten, S.A., Fox, P.T.: Automated Talairach Atlas labels for functional brain mapping. Hum. Brain Mapp. 10, 120–131 (2000)CrossRefGoogle Scholar
  13. 13.
    Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. In: Taha and Hanbury BMC Medical Imaging (2015)Google Scholar
  14. 14.
    Polak, M., Zhang, H., Pi, M.: An evaluation metric for image segmentation of multiple objects. In: Image and Vision Computing (2009)Google Scholar
  15. 15.
    Hiralal, R., Menon, H.P.: A survey of brain MRI image segmentation methods and the issues involved. In: Corchado Rodriguez, J.M. et al. (eds.) Intelligent Systems Technologies and Applications 2016. Advances in Intelligent Systems and Computing, vol. 530, pp. 245–259 (2016)Google Scholar

Copyright information

© Springer International Publishing AG  2018

Authors and Affiliations

  • Hema P. Menon
    • 1
    Email author
  • Reshma Hiralal
    • 1
  • A. Anand Kumar
    • 2
  • Davidson Devasia
    • 2
  1. 1.Department of Computer Science and Engineering, Amrita School of Engineering, CoimbatoreAmrita Vishwa Vidyapeetham, Amrita UniversityCoimbatoreIndia
  2. 2.Department of Neurology, School of Medicine, Amrita Institute of Medical Sciences, KochiAmrita Vishwa Vidyapeetham, Amrita UniversityCoimbatoreIndia

Personalised recommendations