Computational Vision and Bio Inspired Computing pp 111-119 | Cite as
A Study on Fuzzy Weakly Ultra Separation Axioms via Fuzzy \( \widehat{\varvec{\mu}} \)Β-Kernel Set
Conference paper
First Online:
- 1.4k Downloads
Abstract
In this paper, we introduce a new class of fuzzy closed sets called fuzzy \( \widehat{\mu } \)β-closed sets also we introduce the concept of fuzzy \( \widehat{\mu } \)β-kernel set in a fuzzy topological space. We also investigate some of the properties of weak fuzzy separation axioms like fuzzy \( \widehat{\mu } \)β-Ri space, i = 0, 1, 2, 3 and fuzzy \( \widehat{\mu } \)β-Ti-space, i = 0, 1, 2, 3, 4.
Keywords
Fuzzy \( \widehat{\mu } \)β-closed sets Fuzzy \( \widehat{\mu } \)β-kernel set Fuzzy \( \widehat{\mu } \)β\( R_{i} \)-space, i = 0, 1, 2, 3 Fuzzy \( \widehat{\mu } \)β\( T_{i} \)-space, i = 0, 1, 2, 3, 4References
- 1.Wong, C.K.: Fuzzy points and local properties of fuzzy topology. J. Math. Anal. Appl. 46, 316–328 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Chang, C.L.: Fuzzy topological spaces. J. Math. Anal. Appl. 24, 182–190 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Goguen, J.A.: The fuzzy Tychonoff theorem. J. Math. Anal. Appl. 43, 734–742 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Kubiak, T.: On fuzzy topologies, Ph.D. thesis. A. Mickiewicz, Poznan (1985)Google Scholar
- 5.Sostak, A.P.: On a fuzzy topological structure. Rendiconti del Circolo Matematico di Palermo. Series II, 11, 89–103 (1985)Google Scholar
- 6.Andrijevic, D.: Semi preopen sets. Mat. Vesnik. 38, 24–32 (1986)MathSciNetzbMATHGoogle Scholar
- 7.Subashini, J., Indirani, K.: On \( \widehat{\mu } \)β set and continuity in Topological Spaces (Proceeding) (2012)Google Scholar
- 8.Zadeh, L.A.: Fuzzy sets. Info. Control 8, 338–353 (1965)Google Scholar
- 9.Wali, R.S., Benchalli, S.S.: Some topics in general and fuzzy topological spaces, Ph.D. Thesis, Karnataka University Dharwd (2006)Google Scholar
- 10.Klir, G.J., Clair, U.S., Yuan, B.: Fuzzy set theory. Foundations and applications (1997)Google Scholar
- 11.Balasubramanian, G.: Fuzzy β open sets and fuzzy β separation axioms. Kybernetika 35, 215–223 (1999)MathSciNetzbMATHGoogle Scholar
- 12.Sarkar, M.: On fuzzy topological spaces. J. Math. Anal. Appl. 79, 384–394 (1981)Google Scholar
Copyright information
© Springer International Publishing AG 2018