Advertisement

A Study on Fuzzy Weakly Ultra Separation Axioms via Fuzzy \( \widehat{\varvec{\mu}} \)Β-Kernel Set

  • J. SubashiniEmail author
  • K. Indirani
Conference paper
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 28)

Abstract

In this paper, we introduce a new class of fuzzy closed sets called fuzzy \( \widehat{\mu } \)β-closed sets also we introduce the concept of fuzzy \( \widehat{\mu } \)β-kernel set in a fuzzy topological space. We also investigate some of the properties of weak fuzzy separation axioms like fuzzy \( \widehat{\mu } \)β-Ri space, i = 0, 1, 2, 3 and fuzzy \( \widehat{\mu } \)β-Ti-space, i = 0, 1, 2, 3, 4.

Keywords

Fuzzy \( \widehat{\mu } \)β-closed sets Fuzzy \( \widehat{\mu } \)β-kernel set Fuzzy \( \widehat{\mu } \)β\( R_{i} \)-space, i = 0, 1, 2, 3 Fuzzy \( \widehat{\mu } \)β\( T_{i} \)-space, i = 0, 1, 2, 3, 4 

References

  1. 1.
    Wong, C.K.: Fuzzy points and local properties of fuzzy topology. J. Math. Anal. Appl. 46, 316–328 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chang, C.L.: Fuzzy topological spaces. J. Math. Anal. Appl. 24, 182–190 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Goguen, J.A.: The fuzzy Tychonoff theorem. J. Math. Anal. Appl. 43, 734–742 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kubiak, T.: On fuzzy topologies, Ph.D. thesis. A. Mickiewicz, Poznan (1985)Google Scholar
  5. 5.
    Sostak, A.P.: On a fuzzy topological structure. Rendiconti del Circolo Matematico di Palermo. Series II, 11, 89–103 (1985)Google Scholar
  6. 6.
    Andrijevic, D.: Semi preopen sets. Mat. Vesnik. 38, 24–32 (1986)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Subashini, J., Indirani, K.: On \( \widehat{\mu } \)β set and continuity in Topological Spaces (Proceeding) (2012)Google Scholar
  8. 8.
    Zadeh, L.A.: Fuzzy sets. Info. Control 8, 338–353 (1965)Google Scholar
  9. 9.
    Wali, R.S., Benchalli, S.S.: Some topics in general and fuzzy topological spaces, Ph.D. Thesis, Karnataka University Dharwd (2006)Google Scholar
  10. 10.
    Klir, G.J., Clair, U.S., Yuan, B.: Fuzzy set theory. Foundations and applications (1997)Google Scholar
  11. 11.
    Balasubramanian, G.: Fuzzy β open sets and fuzzy β separation axioms. Kybernetika 35, 215–223 (1999)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Sarkar, M.: On fuzzy topological spaces. J. Math. Anal. Appl. 79, 384–394 (1981)Google Scholar

Copyright information

© Springer International Publishing AG  2018

Authors and Affiliations

  1. 1.Department of MathematicsRVS College of Arts and ScienceCoimbatoreIndia
  2. 2.Nirmala College for Women Red FieldsCoimbatoreIndia

Personalised recommendations