Using Linguistic Activity in Social Networks to Predict and Interpret Dark Psychological Traits

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 789)


Studying the relationships between one’s psychological characteristics and linguistic behaviour is a problem of a profound importance in many fields ranging from psychology to marketing, but there are very few works of this kind on Russian-speaking samples. We use Latent Dirichlet Allocation on the Facebook status updates to extract interpretable features that we then use to identify Facebook users with certain negative psychological traits (the so-called Dark Triad: narcissism, psychopathy, and Machiavellianism) and to find the themes that are most important to such individuals.



The authors acknowledge Saint Petersburg State University for a research grant 8.38.351.2015.


  1. 1.
    Agarwal, S., Sureka, A.: Applying social media intelligence for predicting and identifying on-line radicalization and civil unrest oriented threats. arXiv preprint arXiv:1511.06858 (2015)
  2. 2.
    Alam, F., Stepanov, E.A., Riccardi, G.: Personality traits recognition on social network-facebook. In: WCPR (ICWSM-13), Cambridge, MA, USA (2013)Google Scholar
  3. 3.
    Alekseev, A., Nikolenko, S.I.: Predicting the age of social network users from user-generated texts with word embeddings. In: Artificial Intelligence and Natural Language Conference (AINL), IEEE, pp. 1–11. IEEE (2016)Google Scholar
  4. 4.
    Alghamdi, R., Alfalqi, K.: A survey of topic modeling in text mining. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 6(1) (2015)Google Scholar
  5. 5.
    Bachrach, Y., Kosinski, M., Graepel, T., Kohli, P., Stillwell, D.: Personality and patterns of facebook usage. In: Proceedings of the 4th Annual ACM Web Science Conference, pp. 24–32. ACM (2012)Google Scholar
  6. 6.
    Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165–1188 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Buraya, K., Farseev, A., Filchenkov, A., Chua, T.-S.: Towards user personality profiling from multiple social networks. In: AAAI, pp. 4909–4910 (2017)Google Scholar
  8. 8.
    Campbell, W.K., Miller, J.D.: The handbook of narcissism and narcissistic personality disorder: theoretical approaches, empirical findings, and treatments. Wiley, Hoboken (2011)CrossRefGoogle Scholar
  9. 9.
    Crowne, D.P., Marlowe, D.: A new scale of social desirability independent of psychopathology. J. Consult. Psychol. 24(4), 349 (1960)CrossRefGoogle Scholar
  10. 10.
    de Montjoye, Y.-A., Quoidbach, J., Robic, F., Pentland, A.S.: Predicting personality using novel mobile phone-based metrics. In: Greenberg, A.M., Kennedy, W.G., Bos, N.D. (eds.) SBP 2013. LNCS, vol. 7812, pp. 48–55. Springer, Heidelberg (2013). Scholar
  11. 11.
    Ding, T., Bickel, W.K., Pan, S.: Social media-based substance use prediction. arXiv preprint arXiv:1705.05633 (2017)
  12. 12.
    Egorova, M., Sitnikova, M.: Parshikova ov adaptatsiia korotkogo oprosnika temnoi triady [adaptation of the short dark triad]. Psikhologicheskie issledovaniia 8(43), 1 (2015)Google Scholar
  13. 13.
    Farseev, A., Nie, L., Akbari, M., Chua, T.-S.: Harvesting multiple sources for user profile learning: a big data study. In: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, pp. 235–242. ACM (2015)Google Scholar
  14. 14.
    Farseev, A., Samborskii, I., Chua, T.-S.: bbridge: A big data platform for social multimedia analytics. In: Proceedings of the 2016 ACM on Multimedia Conference, pp. 759–761. ACM (2016)Google Scholar
  15. 15.
    Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical learning. Springer series in statistics, vol. 1. Springer, Berlin (2001)Google Scholar
  16. 16.
    Garcia, D., Sikström, S.: The dark side of facebook: Semantic representations of status updates predict the dark triad of personality. Pers. Individ. Differ. 67, 92–96 (2014)CrossRefGoogle Scholar
  17. 17.
    Jakobwitz, S., Egan, V.: The dark triad and normal personality traits. Pers. Individ. Differ. 40(2), 331–339 (2006)CrossRefGoogle Scholar
  18. 18.
    Jones, D.N., Paulhus, D.L.: Introducing the short dark triad (sd3) a brief measure of dark personality traits. Assessment 21(1), 28–41 (2014)CrossRefGoogle Scholar
  19. 19.
    Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. Proc. Natl. Acad. Sci. 110(15), 5802–5805 (2013)CrossRefGoogle Scholar
  20. 20.
    Lambiotte, R., Kosinski, M.: Tracking the digital footprints of personality. Proc. IEEE 102(12), 1934–1939 (2014)CrossRefGoogle Scholar
  21. 21.
    Markovikj, D., Gievska, S., Kosinski, M., Stillwell, D.J.: Mining facebook data for predictive personality modeling. In: Seventh International AAAI Conference on Weblogs and Social Media (2013)Google Scholar
  22. 22.
    Nielsen, F.Å.: A new anew: evaluation of a word list for sentiment analysis in microblogs. arXiv preprint arXiv:1103.2903 (2011)
  23. 23.
    Panicheva, P., Ledovaya, Y., Bogolyubova, O.: Lexical, morphological and semantic correlates of the dark triad personality traits in russian facebook texts. In: Artificial Intelligence and Natural Language Conference (AINL), IEEE, pp. 1–8. IEEE (2016)Google Scholar
  24. 24.
    Peng, Z., Hu, Q., Dang, J.: Multi-kernel svm based depression recognition using social media data. Int. J. Mach. Learn. Cybern. 1–15 (2017)Google Scholar
  25. 25.
    Preotiuc-Pietro, D., Carpenter, J., Giorgi, S., Ungar, L.: Studying the dark triad of personality through twitter behavior. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 761–770. ACM (2016)Google Scholar
  26. 26.
    Preoţiuc-Pietro, D., Carpenter, J., Giorgi, S., Ungar, L.: Studying the dark triad of personality using twitter behavior (2016)Google Scholar
  27. 27.
    Schwartz, H.A., Eichstaedt, J.C., Kern, M.L., Dziurzynski, L., Ramones, S.M., Agrawal, M., Shah, A., Kosinski, M., Stillwell, D., Seligman, M.E., et al.: Personality, gender, and age in the language of social media: the open-vocabulary approach. PloS One 8(9), e73791 (2013)CrossRefGoogle Scholar
  28. 28.
    Skeem, J.L., Polaschek, D.L., Patrick, C.J., Lilienfeld, S.O.: Psychopathic personality: bridging the gap between scientific evidence and public policy. Psychol. Sci. Public Interest 12(3), 95–162 (2011)CrossRefGoogle Scholar
  29. 29.
    Sumner, C., Byers, A., Boochever, R., Park, G.J.: Predicting dark triad personality traits from twitter usage and a linguistic analysis of tweets. In: 11th International Conference on Machine Learning and Applications (ICMLA), 2012, vol. 2, pp. 386–393. IEEE (2012)Google Scholar
  30. 30.
    Tausczik, Y.R., Pennebaker, J.W.: The psychological meaning of words: Liwc and computerized text analysis methods. J. Lang. Soc. Psychol. 29(1), 24–54 (2010)CrossRefGoogle Scholar
  31. 31.
    Wang, P., Guo, J., Lan, Y., Xu, J., Cheng, X.: Multi-task representation learning for demographic prediction. In: Ferro, N., Crestani, F., Moens, M.-F., Mothe, J., Silvestri, F., Di Nunzio, G.M., Hauff, C., Silvello, G. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 88–99. Springer, Cham (2016). Scholar
  32. 32.
    Williams, K., McAndrew, A., Learn, T., Harms, P., Paulhus, D.L.: The dark triad returns: entertainment preferences and antisocial behavior among narcissists, machiavellians, and psychopaths. In: Poster presented at the 109th Annual Convention of the American Psychological Association, San Francisco, CA (2001)Google Scholar
  33. 33.
    Zhang, C., Zhang, P.: Predicting gender from blog posts. University of Massachusetts Amherst, USA (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySaint PetersburgRussia
  2. 2.ITMO universitySaint PetersburgRussia

Personalised recommendations