Advertisement

Fungal Inteins: Distribution, Evolution, and Applications

  • Skander Elleuche
  • Stefanie PöggelerEmail author
Chapter
Part of the The Mycota book series (MYCOTA, volume 15)

Abstract

Inteins are internal in-frame insertions transcribed and translated together with their host protein and excised at the protein level. The posttranslational process that excises the intein from a precursor protein with subsequent ligation of the flanking protein fragments, called N- and C-exteins, is termed protein splicing. Inteins have predominantly been identified in prokaryotes but are also found in fungal genomes. The growing number of fully sequenced fungal genomes encourages computer-aided identification in diverse species. This review gives an update on fungal inteins that includes the characteristics, as well as the distribution of fungal inteins. It summarizes the recent progress in understanding the protein splicing mechanism, discusses intein evolution, and gives an overview how fungal inteins can be used for technical applications.

References

  1. Alford SC, O’Sullivan C, Obst J, Christie J, Howard PL (2014) Conditional protein splicing of α-sarcin in live cells. Mol BioSyst 10:831–837PubMedCrossRefGoogle Scholar
  2. Amitai G, Belenkiy O, Dassa B, Shainskaya A, Pietrokovski S (2003) Distribution and function of new bacterial intein-like protein domains. Mol Microbiol 47:61–73PubMedCrossRefGoogle Scholar
  3. Aranko A, Wlodawer A, Iwaï H (2014) Nature’s recipe for splitting inteins. Protein Eng Des Sel 27:263–271PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bakhrat A, Jurica MS, Stoddard BL, Raveh D (2004) Homology modeling and mutational analysis of Ho endonuclease of yeast. Genetics 166:721–728PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bakhrat A, Baranes K, Krichevsky O, Rom I, Schlenstedt G, Pietrokovski S, Raveh D (2006) Nuclear import of ho endonuclease utilizes two nuclear localization signals and four importins of the ribosomal import system. J Biol Chem 281:12218–12226PubMedCrossRefGoogle Scholar
  6. Barzel A, Naor A, Privman E, Kupiec M, Gophna U (2011) Homing endonucleases residing within inteins: evolutionary puzzles awaiting genetic solutions. Biochem Soc Trans 39:169–173PubMedCrossRefGoogle Scholar
  7. Beachy PA, Cooper MK, Young KE, von Kessler DP, Park WJ, Hall TM, Leahy DJ, Porter JA (1997) Multiple roles of cholesterol in hedgehog protein biogenesis and signaling. Cold Spring Harb Symp Quant Biol 62:191–204PubMedCrossRefGoogle Scholar
  8. Belfort M, Bonocora RP (2014) Homing endonucleases: from genetic anomalies to programmable genomic clippers. Methods Mol Biol 1123:1–26PubMedPubMedCentralCrossRefGoogle Scholar
  9. Belfort M, Roberts RJ (1997) Homing endonucleases: keeping the house in order. Nucleic Acids Res 25:3379–3388PubMedPubMedCentralCrossRefGoogle Scholar
  10. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557PubMedCrossRefGoogle Scholar
  11. Bokor AAM, van Kan JAL, Poulter RTM (2010) Sexual mating of Botrytis cinerea illustrates PRP8 intein HEG activity. Fungal Genet Biol 47:392–398PubMedCrossRefGoogle Scholar
  12. Bokor AAM, Kohn LM, Poulter RTM, van Kan JAL (2012) PRP8 inteins in species of the genus Botrytis and other ascomycetes. Fungal Genet Biol 49:250–261PubMedCrossRefGoogle Scholar
  13. Burt A, Koufopanou V (2004) Homing endonuclease genes: the rise and fall and rise again of a selfish element. Curr Opin Genet Dev 14:609–615PubMedCrossRefGoogle Scholar
  14. Buskirk AR, Ong YC, Gartner ZJ, Liu DR (2004) Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc Natl Acad Sci U S A 101:10505–10510PubMedPubMedCentralCrossRefGoogle Scholar
  15. Butler MI, Poulter RT (2005) The PRP8 inteins in Cryptococcus are a source of phylogenetic and epidemiological information. Fungal Genet Biol 42:452–463PubMedCrossRefGoogle Scholar
  16. Butler MI, Goodwin TJ, Poulter RT (2001) A nuclear-encoded intein in the fungal pathogen Cryptococcus neoformans. Yeast 18:1365–1370PubMedCrossRefGoogle Scholar
  17. Butler G, Kenny C, Fagan A, Kurischko C, Gaillardin C, Wolfe KH (2004) Evolution of the MAT locus and its HO endonuclease in yeast species. Proc Natl Acad Sci U S A 101:1632–1637PubMedPubMedCentralCrossRefGoogle Scholar
  18. Butler MI, Goodwin TJ, Poulter RT (2005) Two new fungal inteins. Yeast 22:493–501PubMedCrossRefGoogle Scholar
  19. Butler MI, Gray J, Goodwin TJ, Poulter RT (2006) The distribution and evolutionary history of the PRP8 intein. BMC Evol Biol 6:42PubMedPubMedCentralCrossRefGoogle Scholar
  20. Callahan BP, Topilina NI, Stanger MJ, Roey PV, Belfort M (2011) Structure of catalytically competent intein caught in a redox trap with functional and evolutionary implications. Nat Struct Mol Biol 18:630–633PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen X, Shi J, Chen R, Wen Y, Shi Y, Zhu Z, Guo S, Li L (2015) Molecular chaperones (TrxA, SUMO, Intein, and GST) mediating expression, purification, and antimicrobial activity assays of plectasin in Escherichia coli. Biotechnol Appl Biochem 62:606–614PubMedCrossRefGoogle Scholar
  22. Chevalier BS, Stoddard BL (2001) Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 29:3757–3774PubMedPubMedCentralCrossRefGoogle Scholar
  23. Choi JJ, Nam KH, Min B, Kim SJ, Söll D, Kwon ST (2006) Protein trans-splicing and characterization of a split family B-type DNA polymerase from the hyperthermophilic archaeal parasite Nanoarchaeum equitans. J Mol Biol 356:1093–1106PubMedCrossRefGoogle Scholar
  24. Chong S, Xu MQ (1997) Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. J Biol Chem 272:15587–155890PubMedCrossRefGoogle Scholar
  25. Chong S, Xu MQ (2005) Harnessing inteins for protein purification and characterization. In: Belfort M, Derbyshire V, Stoddard BL, Wood DW (eds) Homing endoncleases and inteins. Springer, Heidelberg, pp 273–292CrossRefGoogle Scholar
  26. Chong S, Mersha FB, Comb DG, Scott ME, Landry D, Vence LM, Perler FB, Benner J, Kucera RB, Hirvonen CA, Pelletier JJ, Paulus H, Xu MQ (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192:271–281PubMedCrossRefGoogle Scholar
  27. Cramer P, Armache KJ, Baumli S, Benkert S, Brueckner F, Buchen C, Damsma GE, Dengl S, Geiger SR, Jasiak AJ, Jawhari A, Jennebach S, Kamenski T, Kettenberger H, Kuhn CD, Lehmann E, Leike K, Sydow JF, Vannini A (2008) Structure of eukaryotic RNA polymerases. Annu Rev Biophys 37:337–352PubMedCrossRefGoogle Scholar
  28. Dalgaard JZ, Klar AJ, Moser MJ, Holley WR, Chatterjee A, Mian IS (1997) Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the HNH family. Nucleic Acids Res 25:4626–4638PubMedPubMedCentralCrossRefGoogle Scholar
  29. Davis EO, Jenner PJ, Brooks PC, Colston MJ, Sedgwick SG (1992) Protein splicing in the maturation of M. tuberculosis recA protein: a mechanism for tolerating a novel class of intervening sequence. Cell 71:201–210PubMedCrossRefGoogle Scholar
  30. Derbyshire V, Wood DW, Wu W, Dansereau JT, Dalgaard JZ, Belfort M (1997) Genetic definition of a protein-splicing domain: functional mini-inteins support structure predictions and a model for intein evolution. Proc Natl Acad Sci U S A 94:11466–11471PubMedPubMedCentralCrossRefGoogle Scholar
  31. Ding Y, MQ X, Ghosh I, Chen X, Ferrandon S, Lesage G, Rao Z (2003) Crystal structure of a mini-intein reveals a conserved catalytic module involved in side chain cyclization of asparagine during protein splicing. J Biol Chem 278:39133–39142PubMedCrossRefGoogle Scholar
  32. Ding FX, Yan HL, Mei Q, Xue G, Wang YZ, Gao YJ, Sun SH (2007) A novel, cheap and effective fusion expression system for the production of recombinant proteins. Appl Microbiol Biotechnol 77:483–488PubMedCrossRefGoogle Scholar
  33. Dori-Bachash M, Dassa B, Peleg O, Pineiro SA, Jurkevitch E, Pietrokovski S (2009) Bacterial intein-like domains of predatory bacteria: a new domain type characterized in Bdellovibrio bacteriovorus. Funct Integr Genomics 9:153–166PubMedCrossRefGoogle Scholar
  34. Duan X, Gimble FS, Quiocho FA (1997) Crystal structure of PI-SceI, a homing endonuclease with protein splicing activity. Cell 89:555–564PubMedCrossRefGoogle Scholar
  35. Dujon B (1989) Group I introns as mobile genetic elements: facts and mechanistic speculations – a review. Gene 82:91–114PubMedCrossRefGoogle Scholar
  36. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuvéglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisramé A, Boyer J, Cattolico L, Confanioleri F, De Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, Swennen D, Tekaia F, Wésolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet JL (2004) Genome evolution in yeasts. Nature 430:35–44PubMedCrossRefGoogle Scholar
  37. Elleuche S, Pöggeler S (2007) Trans-splicing of an artificially split fungal mini-intein. Biochem Biophys Res Commun 355:830–834PubMedCrossRefGoogle Scholar
  38. Elleuche S, Pöggeler S (2010) Inteins, valuable genetic elements in molecular biology and biotechnology. Appl Microbiol Biotechnol 87:479–489PubMedPubMedCentralCrossRefGoogle Scholar
  39. Elleuche S, Pöggeler S (2016) Inteins and their use in protein synthesis with fungi. In: Schmoll M, Dattenböck C (eds) Gene expression systems in fungi: advancements and applications. Springer, Heidelberg, pp 289–307CrossRefGoogle Scholar
  40. Elleuche S, Nolting N, Pöggeler S (2006) Protein splicing of PRP8 mini-inteins from species of the genus Penicillium. Appl Microbiol Biotechnol 72:959–967PubMedCrossRefGoogle Scholar
  41. Elleuche S, Döring K, Pöggeler S (2008) Minimization of a eukaryotic mini-intein. Biochem Biophys Res Commun 366:239–243PubMedCrossRefGoogle Scholar
  42. Elleuche S, Pelikan C, Nolting N, Pöggeler S (2009) Inteins and introns within the prp8-gene of four Eupenicillium species. J Basic Microbiol 49:52–57PubMedCrossRefGoogle Scholar
  43. Esipov RS, Stepanenko VN, Chupova LA, Boyarskikh UA, Filipenko ML, Miroshnikov AI (2008) Production of recombinant human epidermal growth factor using Ssp dnaB mini-intein system. Protein Expr Purif 61:1–6PubMedCrossRefGoogle Scholar
  44. Esipov RS, Stepanenko VN, Chupova LA, Miroshnikov AI (2012) Production of recombinant oxytocin through sulfitolysis of inteincontaining fusion protein. Protein Pept Lett 19:479–484Google Scholar
  45. Esipov RS, Makarov DA, Stepanenko VN, Miroshnikov AI (2016) Development of the intein-mediated method for production of recombinant thymosin β4 from the acetylated in vivo fusion protein. J Biotechnol 228:73–81PubMedCrossRefGoogle Scholar
  46. Fernandes JAL, Prandini THR, Castro MCA, Arantes TD, Giacobino J, Bagagli E, Theodoro RC (2016) Evolution and application of inteins in Candida species: a review. Front Microbiol 7:1585PubMedPubMedCentralCrossRefGoogle Scholar
  47. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246PubMedCrossRefGoogle Scholar
  48. Frey S, Reschka EJ, Pöggeler S (2015) Germinal center kinases SmKIN3 and SmKIN24 are associated with the Sordaria macrospora Striatin-interacting phosphatase and kinase (STRIPAK) complex. PLoS One 10:e0139163PubMedPubMedCentralCrossRefGoogle Scholar
  49. Fukuda T, Nogami S, Ohya Y (2003) VDE-initiated intein homing in Saccharomyces cerevisiae proceeds in a meiotic recombination-like manner. Genes Cells 8:587–602PubMedCrossRefGoogle Scholar
  50. Fukuda T, Nagai Y, Ohya Y (2004) Molecular mechanism of VDE-initiated intein homing in yeast nuclear genome. Adv Biophys 38:215–232CrossRefGoogle Scholar
  51. Gera N, Hussain M, Rao BM (2013) Protein selection using yeast surface display. Methods 60:15–26PubMedCrossRefGoogle Scholar
  52. Gimble FS (2000) Invasion of a multitude of genetic niches by mobile endonuclease genes. FEMS Microbiol Lett 185:99–107PubMedCrossRefGoogle Scholar
  53. Gimble FS (2001) Degeneration of a homing endonuclease and its target sequence in a wild yeast strain. Nucleic Acids Res 29:4215–4223PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gimble FS, Stephens BW (1995) Substitutions in conserved dodecapeptide motifs that uncouple the DNA binding and DNA cleavage activities of PI-SceI endonuclease. J Biol Chem 270:5849–5856PubMedCrossRefGoogle Scholar
  55. Gimble FS, Thorner J (1992) Homing of a DNA endonuclease gene by meiotic gene conversion in Saccharomyces cerevisiae. Nature 357:301–306PubMedCrossRefGoogle Scholar
  56. Gimble FS, Thorner J (1993) Purification and characterization of VDE, a site-specific endonuclease from the yeast Saccharomyces cerevisiae. J Biol Chem 268:21844–21853PubMedGoogle Scholar
  57. Gimble FS, Wang J (1996) Substrate recognition and induced DNA distortion by the PI-SceI endonuclease, an enzyme generated by protein splicing. J Mol Biol 263:163–180PubMedCrossRefGoogle Scholar
  58. Gion WR, Davis-Taber RA, Regier DA, Fung E, Medina L, Santora LC, Bose S, Ivanov AV, Perilli-Palmer BA, Chumsae CM, Matuck JG, Kunes YZ, Carson GR (2013) Expression of antibodies using single open reading frame (sORF) vector design: demonstration of manufacturing feasibility. MAbs 5:595–607PubMedPubMedCentralCrossRefGoogle Scholar
  59. Goddard MR, Burt A (1999) Recurrent invasion and extinction of a selfish gene. Proc Natl Acad Sci U S A 96:13880–13885PubMedPubMedCentralCrossRefGoogle Scholar
  60. Gogarten JP, Hilario E (2006) Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements. BMC Evol Biol 6:94PubMedPubMedCentralCrossRefGoogle Scholar
  61. Gogarten JP, Senejani AG, Zhaxybayeva O, Olendzenski L, Hilario E (2002) Inteins: structure, function, and evolution. Annu Rev Microbiol 56:263–287PubMedCrossRefGoogle Scholar
  62. Goodwin TJ, Butler MI, Poulter RT (2006) Multiple, non-allelic, intein-coding sequences in eukaryotic RNA polymerase genes. BMC Biol 4:38PubMedPubMedCentralCrossRefGoogle Scholar
  63. Grainger RJ, Beggs JD (2005) Prp8 protein: at the heart of the spliceosome. RNA 11:533–557PubMedPubMedCentralCrossRefGoogle Scholar
  64. Gu HH, Xu J, Gallagher M, Dean GE (1993) Peptide splicing in the vacuolar ATPase subunit A from Candida tropicalis. J Biol Chem 268:7372–7381PubMedGoogle Scholar
  65. Haber JE (1998) Mating-type gene switching in Saccharomyces cerevisiae. Annu Rev Genet 32:561–599PubMedCrossRefGoogle Scholar
  66. Hall TM, Porter JA, Young KE, Koonin EV, Beachy PA, Leahy DJ (1997) Crystal structure of a Hedgehog autoprocessing domain: homology between Hedgehog and self-splicing proteins. Cell 91:85–97PubMedCrossRefGoogle Scholar
  67. Hink MA, Bisselin T, Visser AJ (2002) Imaging protein-protein interactions in living cells. Plant Mol Biol 50:871–883PubMedCrossRefGoogle Scholar
  68. Hirata R, Ohsumk Y, Nakano A, Kawasaki H, Suzuki K, Anraku Y (1990) Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 265:6726–6733PubMedGoogle Scholar
  69. Hoff B, Kück U (2005) Use of bimolecular fluorescence complementation to demonstrate transcription factor interaction in nuclei of living cells from the filamentous fungus Acremonium chrysogenum. Curr Genet 47:132–138PubMedCrossRefGoogle Scholar
  70. Ingham PW (2001) Hedgehog signaling: a tale of two lipids. Science 294:1879–19881PubMedCrossRefGoogle Scholar
  71. Iwai H, Züger S, Jin J, Tam P-H (2006) Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett 580:1853–1858PubMedCrossRefGoogle Scholar
  72. Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326PubMedCrossRefGoogle Scholar
  73. Kane PM, Yamashiro CT, Wolczyk DF, Neff N, Goebl M, Stevens TH (1990) Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science 250:651–657PubMedCrossRefGoogle Scholar
  74. Kenyon C, Bonorchis K, Corcoran C, Meintjes G, Locketz M, Lehloenya R, Vismer HF, Naicker P, Prozesky H, van Wyk M, Bamford C, du Plooy M, Imrie G, Dlamini S, Borman AM, Colebunders R, Yansouni CP, Mendelson M, Govender NP (2013) A dimorphic fungus causing disseminated infection in South Africa. N Engl J Med 369:1416–1424PubMedCrossRefGoogle Scholar
  75. Klabunde T, Sharma S, Telenti A, Jacobs WRJ, Sacchettini JC (1998) Crystal structure of GyrA intein from Mycobacterium xenopi reveals structural basis of protein splicing. Nat Struct Biol 5:31–36PubMedCrossRefGoogle Scholar
  76. Koonin EV (1995) A protein splice-junction motif in hedgehog family proteins. Trends Biochem Sci 20:141–142PubMedCrossRefGoogle Scholar
  77. Koufopanou V, Burt A (2004) Degeneration and domestication of a selfish gene in yeast: molecular evolution versus site-directed mutagenesis. Mol Biol Evol 22:1535–1538CrossRefGoogle Scholar
  78. Koufopanou V, Goddard MR, Burt A (2002) Adaptation for horizontal transfer in a homing endonuclease. Mol Biol Evol 19:239–246PubMedCrossRefGoogle Scholar
  79. Kwong KWY, Wong WKR (2013) A revolutionary approach facilitating co-expression of authentic human epidermal growth factor and basic fibroblast growth factor in both cytoplasm and culture medium of Escherichia coli. Appl Microbiol Biotechnol 97:9071–9080PubMedCrossRefGoogle Scholar
  80. Kwong KWY, Ng AKL, Wong WKR (2016a) Engineering versatile protein expression systems mediated by inteins in Escherichia coli. Appl Microbiol Biotechnol 100:255–262PubMedCrossRefGoogle Scholar
  81. Kwong KWY, Sivakumar T, Wong WKR (2016b) Intein mediated hyper-production of authentic human basic fibroblast growth factor in Escherichia coli. Sci Rep 6:33948PubMedPubMedCentralCrossRefGoogle Scholar
  82. Leipe DD, Koonin EV, Aravind L (2004) STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J Mol Biol 343:1–28PubMedCrossRefGoogle Scholar
  83. Li Y (2015) Split-inteins and their bioapplications. Biotechnol Lett 37:2121–2137PubMedCrossRefGoogle Scholar
  84. Liu XQ (2000) Protein-splicing intein: genetic mobility, origin, and evolution. Annu Rev Genet 34:61–76PubMedCrossRefGoogle Scholar
  85. Liu XQ, Yang J (2004) Prp8 intein in fungal pathogens: target for potential antifungal drugs. FEBS Lett 572:46–50PubMedCrossRefGoogle Scholar
  86. Luo HR, Moreau GA, Levin N, Moore MJ (1999) The human Prp8 protein is a component of both U2- and U12-dependent spliceosomes. RNA 5:893–908PubMedPubMedCentralCrossRefGoogle Scholar
  87. Malik R, Capoor MR, Vanidassane I, Gogna A, Singh A, Sen B, Rudramurthy SM, Honnavar P, Gupta S, Chakrabarti A (2016) Disseminated Emmonsia pasteuriana infection in India: a case report and a review. Mycoses 59:127–132PubMedCrossRefGoogle Scholar
  88. Marshall CJ, Agarwal N, Kalia J, Grosskopf VA, McGrath NA, Abbott NL, Raines RT, Shusta EV (2013) Facile chemical functionalization of proteins through intein-linked yeast display. Bioconjug Chem 24:1634–1644PubMedCrossRefGoogle Scholar
  89. Mills KV, Lew BM, Jiang S, Paulus H (1998) Protein splicing in trans by purified N- and C-terminal fragments of the Mycobacterium tuberculosis RecA intein. Proc Natl Acad Sci U S A 95:3543–3548PubMedPubMedCentralCrossRefGoogle Scholar
  90. Mills KV, Johnson MA, Perler FB (2014) Protein splicing: how inteins escape from precursor proteins. J Biol Chem 289:14498–14505PubMedPubMedCentralCrossRefGoogle Scholar
  91. Miyake T, Hiraishi H, Sammoto H, Ono B (2003) Involvement of the VDE homing endonuclease and rapamycin in regulation of the Saccharomyces cerevisiae GSH11 gene encoding the high affinity glutathione transporter. J Biol Chem 278:39632–39636PubMedCrossRefGoogle Scholar
  92. Monier A, Sudek S, Fast NM, Worden AZ (2013) Gene invasion in distant eukaryotic lineages: discovery of mutually exclusive genetic elements reveals marine biodiversity. ISME J 7:1764–1774PubMedPubMedCentralCrossRefGoogle Scholar
  93. Mootz HD, Muir TW (2002) Protein splicing triggered by a small molecule. J Am Chem Soc 124:9044–9045PubMedCrossRefGoogle Scholar
  94. Moure CM, Gimble FS, Quiocho FA (2002) Crystal structure of the intein homing endonuclease PI-SceI bound to its recognition sequence. Nat Struct Biol 9:764–770PubMedCrossRefGoogle Scholar
  95. Nagai Y, Nogami S, Kumagai-Sano F, Ohya Y (2003) Karyopherin-mediated nuclear import of the homing endonuclease VMA1-derived endonuclease is required for self-propagation of the coding region. Mol Cell Biol 25:1726–1736CrossRefGoogle Scholar
  96. Naor A, Altman-Price N, Soucy SM, Green AG, Mitiagin Y, Turgeman-Grott I, Davidovich N, Gogarten JP, Gophna U (2016) Impact of a homing intein on recombination frequency and organismal fitness. Proc Natl Acad Sci U S A 113:E4654–E4661PubMedPubMedCentralCrossRefGoogle Scholar
  97. Nelson N, Harvey WR (1999) Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol Rev 79:361–385PubMedCrossRefGoogle Scholar
  98. Nelson RT, Lodes JK (2006) Cryptococcus neoformans pathogenicity. In: Brown AJP (ed) The Mycota XIII. Springer, Berlin, pp 237–266Google Scholar
  99. Noël AJ, Wende W, Pingoud A (2004) DNA recognition by the homing endonuclease PI-SceI involves a divalent metal ion cofactor-induced conformational change. J Biol Chem 279:6794–6804PubMedCrossRefGoogle Scholar
  100. Nolting N, Pöggeler S (2006) A MADS box protein interacts with a mating-type protein and is required for fruiting body development in the homothallic ascomycete Sordaria macrospora. Eukaryot Cell 5:1043–1056PubMedPubMedCentralCrossRefGoogle Scholar
  101. Noren CJ, Wang J, Perler FB (2000) Dissecting the chemistry of protein splicing and its applications. Angew Chem Int Ed Eng 39:450–466CrossRefGoogle Scholar
  102. Novikova O, Topilina N, Belfort M (2014) Enigmatic distribution, evolution, and function of inteins. J Biol Chem 289:14490–14497PubMedPubMedCentralCrossRefGoogle Scholar
  103. Novikova O, Jayachandran P, Kelley DS, Morton Z, Merwin S, Topilina NI, Belfort M (2016) Intein clustering suggests functional importance in different domains of life. Mol Biol Evol 33:783–799PubMedCrossRefGoogle Scholar
  104. Okuda Y, Sasaki D, Nogami S, Kaneko Y, Ohya Y, Anraku Y (2003) Occurrence, horizontal transfer and degeneration of VDE intein family in Saccharomycete yeasts. Yeast 20:563–573PubMedCrossRefGoogle Scholar
  105. Ozawa T, Sako Y, Sato M, Kitamura T, Umezawa Y (2003) A genetic approach to identifying mitochondrial proteins. Nat Biotechnol 21:287–293PubMedCrossRefGoogle Scholar
  106. Ozawa T, Nishitani K, Sako Y, Umezawa Y (2005) A high-throughput screening of genes that encode proteins transported into the endoplasmic reticulum in mammalian cells. Nucleic Acids Res 33:e34PubMedPubMedCentralCrossRefGoogle Scholar
  107. Pasch JC, Nickelsen J, Schünemann D (2005) The yeast split-ubiquitin system to study chloroplast membrane protein interactions. Appl Microbiol Biotechnol 69:440–447PubMedCrossRefGoogle Scholar
  108. Pearl EJ, Bokor AA, Butler MI, Poulter RT, Wilbanks SM (2007a) Preceding hydrophobic and beta-branched amino acids attenuate splicing by the CnePRP8 intein. Biochim Biophys Acta 1774:995–1001PubMedCrossRefGoogle Scholar
  109. Pearl EJ, Tyndall JD, Poulter RT, Wilbanks SM (2007b) Sequence requirements for splicing by the Cne PRP8 intein. FEBS Lett 581:3000–3004PubMedCrossRefGoogle Scholar
  110. Perler FB (1998) Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution. Cell 92:1–4PubMedCrossRefGoogle Scholar
  111. Perler FB (2002) InBase: the intein database. Nucleic Acids Res 30:383–384PubMedPubMedCentralCrossRefGoogle Scholar
  112. Perler FB (2005) Inteins – a historical perspective. In: Belfort M et al (eds) Homing endonucleases and inteins. Springer, HeidelbergGoogle Scholar
  113. Perler FB, Davis EO, Dean GE, Gimble FS, Jack WE, Neff N, Noren CJ, Thorner J, Belfort M (1994) Protein splicing elements: inteins and exteins – a definition of terms and recommended nomenclature. Nucleic Acids Res 22:1125–1127PubMedPubMedCentralCrossRefGoogle Scholar
  114. Perler FB, Olsen GJ, Adam E (1997) Compilation and analysis of intein sequences. Nucleic Acids Res 25:1087–1093PubMedPubMedCentralCrossRefGoogle Scholar
  115. Piégu B, Bire S, Arensburger P, Bigot Y (2015) A survey of transposable element classification systems – a call for a fundamental update to meet the challenge of their diversity and complexity. Mol Phylogenet Evol 86:90–109PubMedCrossRefGoogle Scholar
  116. Pietrokovski S (1994) Conserved sequence features of inteins (protein introns) and their use in identifying new inteins and related proteins. Protein Sci 3:2340–2350PubMedPubMedCentralCrossRefGoogle Scholar
  117. Pietrokovski S (1998) Modular organization of inteins and C-terminal autocatalytic domains. Protein Sci 7:64–71PubMedPubMedCentralCrossRefGoogle Scholar
  118. Posey KL, Koufopanou V, Burt A, Gimble FS (2004) Degeneration and domestication of a selfish gene in yeast: molecular evolution versus site-directed mutagenesis. Nucleic Acids Res 32:3947–3956PubMedPubMedCentralCrossRefGoogle Scholar
  119. Poulter RT, Goodwin TJ, Butler MI (2007) The nuclear-encoded inteins of fungi. Fungal Genet Biol 44:153–179PubMedCrossRefGoogle Scholar
  120. Prandini THR, Theodoro RC, Bruder-Nascimento ACMO, Scheel CM, Bagagli E (2013) Analysis of inteins in the Candida parapsilosis complex for simple and accurate species identification. J Clin Microbiol 51:2830–2836PubMedPubMedCentralCrossRefGoogle Scholar
  121. Rossi F, Charlton CA, Blau HM (1997) Monitoring protein-protein interactions in intact eukaryotic cells by beta-galactosidase complementation. Proc Natl Acad Sci U S A 94:8405–8410PubMedPubMedCentralCrossRefGoogle Scholar
  122. Saleh L, Perler FB (2006) Protein splicing in cis and in trans. Chem Rec 6:183–193PubMedCrossRefGoogle Scholar
  123. Shah NH, Muir TW (2014) Inteins: nature’s gift to protein chemists. Chem Sci 5:446–461PubMedCrossRefGoogle Scholar
  124. Shingledecker K, Jiang SQ, Paulus H (1998) Molecular dissection of the Mycobacterium tuberculosis RecA intein: design of a minimal intein and of a trans-splicing system involving two intein fragments. Gene 207:187–195PubMedCrossRefGoogle Scholar
  125. Shingledecker K, Jiang S, Paulus H (2000) Reactivity of the cysteine residues in the protein splicing active center of the Mycobacterium tuberculosis RecA intein. Arch Biochem Biophys 375:138–144PubMedCrossRefGoogle Scholar
  126. Skretas G, Wood DW (2005) Regulation of protein activity with small-molecule-controlled inteins. Protein Sci 14:523–532PubMedPubMedCentralCrossRefGoogle Scholar
  127. Southworth MW, Adam E, Panne D, Byer R, Kautz R, Perler FB (1998) Control of protein splicing by intein fragment reassembly. EMBO J 17:918–926PubMedPubMedCentralCrossRefGoogle Scholar
  128. Southworth MW, Amaya K, Evans TC, MQ X, Perler FB (1999) Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques 27:110–114PubMedGoogle Scholar
  129. Srinivasa Babu K, Antony A, Muthukumaran T, Meenakshisundaram S (2008) Construction of intein-mediated hGMCSF expression vector and its purification in Pichia pastoris. Protein Expr Purif 57:201–205PubMedCrossRefGoogle Scholar
  130. Srinivasa Babu K, Muthukumaran T, Antony A, Prem Singh Samuel SD, Balamurali M, Murugan V, Meenakshisundaram S (2009) Single step intein-mediated purification of hGMCSF expressed in salt-inducible E. coli. Biotechnol Lett 31:659–664PubMedCrossRefGoogle Scholar
  131. Srinivasa Babu K, Pulicherla KK, Antony A, Meenakshisundaram S (2014) Cloning and expression of recombinant human GMCSF from Pichia pastoris GS115 – a progressive strategy for economic production. Am J Ther 21:462–469PubMedCrossRefGoogle Scholar
  132. Starokadomskyy PL (2007) Protein splicing. Mol Biol (Mosk) 41:314–330CrossRefGoogle Scholar
  133. Steuer S, Pingoud V, Pingoud A, Wende W (2004) Chimeras of the homing endonuclease PI-SceI and the homologous Candida tropicalis intein: a study to explore the possibility of exchanging DNA-binding modules to obtain highly specific endonucleases with altered specificity. Chembiochem 5:206–213PubMedCrossRefGoogle Scholar
  134. Stoddard BL (2005) Homing endonuclease structure and function. Q Rev Biophys 38:49–95PubMedCrossRefGoogle Scholar
  135. Sun W, Yang J, Liu XQ (2004) Synthetic two-piece and three-piece split inteins for protein trans-splicing. J Biol Chem 279:35281–35286PubMedCrossRefGoogle Scholar
  136. Sun P, Ye S, Ferrandon S, Evans TC, MQ X, Rao Z (2005) Crystal structures of an intein from the split dnaE gene of Synechocystis sp. PCC6803 reveal the catalytic model without the penultimate histidine and the mechanism of zinc Ion inhibition of protein splicing. J Mol Biol 353:1093–1105PubMedCrossRefGoogle Scholar
  137. Swithers KS, Senejani AG, Fournier GP, Gogarten JP (2009) Conservation of intron and intein insertion sites: implications for life histories of parasitic genetic elements. BMC Evol Biol 9:303PubMedPubMedCentralCrossRefGoogle Scholar
  138. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533PubMedCrossRefGoogle Scholar
  139. Theodoro RC, Bagagli E, Oliveira C (2008) Phylogenetic analysis of PRP8 intein in Paracoccidioides brasiliensis species complex. Fungal Genet Biol 45:1284–1291PubMedCrossRefGoogle Scholar
  140. Theodoro RC, Volkmann G, Liu X-Q, Bagagli E (2011) PRP8 intein in Ajellomycetaceae family pathogens: sequence analysis, splicing evaluation and homing endonuclease activity. Fungal Genet Biol 48:80–91PubMedCrossRefGoogle Scholar
  141. Theodoro RC, Scheel CM, Brandt ME, Kasuga T, Bagagli E (2013) PRP8 intein in cryptic species of Histoplasma capsulatum: evolution and phylogeny. Infect Genet Evol 18:174–182PubMedCrossRefGoogle Scholar
  142. Topilina NI, Mills KV (2014) Recent advances in in vivo applications of intein-mediated protein splicing. Mob DNA 5:5–5PubMedPubMedCentralCrossRefGoogle Scholar
  143. Topilina NI, Green CM, Jayachandran P, Kelley DS, Stanger MJ, Piazza CL, Nayak S, Belfort M (2015a) SufB intein of Mycobacterium tuberculosis as a sensor for oxidative and nitrosative stresses. Proc Natl Acad Sci U S A 112:10348–10353PubMedPubMedCentralCrossRefGoogle Scholar
  144. Topilina NI, Novikova O, Stanger M, Banavali NK, Belfort M (2015b) Post-translational environmental switch of RadA activity by extein–intein interactions in protein splicing. Nucleic Acids Res 43:6631–6648PubMedPubMedCentralCrossRefGoogle Scholar
  145. Volkmann G, Iwai H (2010) Protein trans-splicing and its use in structural biology: opportunities and limitations. Mol BioSyst 6:2110–2121PubMedCrossRefGoogle Scholar
  146. von der Heyde A, Lockhauserbäumer J, Uetrecht C, Elleuche S (2015) A hydrolase-based reporter system to uncover the protein splicing performance of an archaeal intein. Appl Microbiol Biotechnol 99:7613–7624PubMedCrossRefGoogle Scholar
  147. Wan W, Wang D, Gao X, Hong J (2011) Expression of family 3 cellulose-binding module (CBM3) as an affinity tag for recombinant proteins in yeast. Appl Microbiol Biotechnol 91:789–798PubMedCrossRefGoogle Scholar
  148. Wang H, Meng X-l, Xu J-p, Wang J, Wang H, Ma C-w (2012) Production, purification, and characterization of the cecropin from Plutella xylostella, pxCECA1, using an intein-induced self-cleavable system in Escherichia coli. Appl Microbiol Biotechnol 94:1031–1039PubMedCrossRefGoogle Scholar
  149. Wende W, Grindl W, Christ F, Pingoud A, Pingoud V (1996) Binding, bending and cleavage of DNA substrates by the homing endonuclease Pl-SceI. Nucleic Acids Res 24:4123–4132PubMedPubMedCentralCrossRefGoogle Scholar
  150. Werner E, Wende W, Pingoud A, Heinemann U (2002) High resolution crystal structure of domain I of the Saccharomyces cerevisiae homing endonuclease PI-SceI. Nucleic Acids Res 30:3962–3971PubMedPubMedCentralCrossRefGoogle Scholar
  151. Wood DW, Wu W, Belfort G, Derbyshire V, Belfort M (1999) A genetic system yields self-cleaving inteins for bioseparations. Nat Biotechnol 17:889–892PubMedCrossRefGoogle Scholar
  152. Woods JP (2002) Histoplasma capsulatum molecular genetics, pathogenesis, and responsiveness to its environment. Fungal Genet Biol 35:81–97PubMedCrossRefGoogle Scholar
  153. Wu H, Hu Z, Liu XQ (1998) Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A 95:9226–9231PubMedPubMedCentralCrossRefGoogle Scholar
  154. Xu MQ, Southworth MW, Mersha FB, Hornstra LJ, Perler FB (1993) In vitro protein splicing of purified precursor and the identification of a branched intermediate. Cell 75:1371–1377PubMedCrossRefGoogle Scholar
  155. Yahara K, Fukuyo M, Sasaki A, Kobayashi I (2009) Evolutionary maintenance of selfish homing endonuclease genes in the absence of horizontal transfer. Proc Natl Acad Sci U S A 106:18861–18866PubMedPubMedCentralCrossRefGoogle Scholar
  156. Zhou X, Song Z, Liu X, Jia F, Wang Y (2011) Production of recombinant porcine interferon alpha using PHB–intein-mediated protein purification strategy. Appl Biochem Biotechnol 163:981–993PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Miltenyi Biotec GmbHBergisch GladbachGermany
  2. 2.Abteilung Genetik eukaryotischer MikroorganismenInstitut für Mikrobiologie und Genetik, Georg-August-Universität GöttingenGöttingenGermany
  3. 3.Göttingen Center for Molecular Biosciences (GZMB)Georg-August-University GöttingenGöttingenGermany

Personalised recommendations