Skip to main content

Polyketide Synthase–Nonribosomal Peptide Synthetase Hybrid Enzymes of Fungi

  • Chapter
  • First Online:
Physiology and Genetics

Part of the book series: The Mycota ((MYCOTA,volume 15))

Abstract

Fungi are known to produce various nonribosomal peptide-derived compounds that exhibit useful bioactivities. However, understanding of how those fungal secondary metabolites are biosynthesized still remains limited. In this review, we focus on recent efforts in engineering select fungal species to make them amenable to efficient genetic modifications for identifying genes responsible for the biosynthesis of secondary metabolites. The fungi discussed in this review are Chaetomium globosum, Aspergillus fumigatus, A. niger, A. nidulans, and A. oryzae. This review also discusses how the engineered fungi are used in deciphering the mechanism of natural product biosynthesis, primarily through heterologous reconstitution of biosynthetic pathways of interest. In particular, potential involvement of enzymatic Diels–Alder reactions in the secondary metabolite biosynthesis is discussed in details. Compounds discussed here are cytochalasans, such as chaetoglobosins and cytochalasins, Sch 210972, equisetin, and pyrrolocins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Auclair K, Sutherland A, Kennedy J, Witter DJ, Van den Heever JP, Hutchinson CR, Vederas JC (2000) Lovastatin nonaketide synthase catalyzes an intramolecular Diels–Alder reaction of a substrate analogue. J Am Chem Soc 122:11519–11520

    Article  CAS  Google Scholar 

  • Awakawa T, Yang XL, Wakimoto T, Abe I (2013) Pyranonigrin E: a PKS-NRPS hybrid metabolite from Aspergillus niger identified by genome mining. Chembiochem 14:2095–2099

    Article  CAS  PubMed  Google Scholar 

  • Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346

    Article  CAS  PubMed  Google Scholar 

  • Boettger D, Hertweck C (2013) Molecular diversity sculpted by fungal PKS–NRPS hybrids. Chembiochem 14:28–42

    Article  CAS  PubMed  Google Scholar 

  • Bok JW, Chiang YM, Szewczyk E, Reyes-Dominguez Y, Davidson AD, Sanchez JF, Lo HC, Watanabe K, Strauss J, Oakley BR, Wang CC, Keller NP (2009) Chromatin-level regulation of biosynthetic gene clusters. Nat Chem Biol 5:462–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22

    Article  CAS  PubMed  Google Scholar 

  • Burmeister HR, Bennett GA, Vesonder RF, Hesseltine CW (1974) Antibiotic produced by Fusarium equiseti NRRL 5537. Antimicrob Agents Chemother 5:634–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang YM, Oakley CE, Ahuja M, Entwistle R, Schultz A, Chang SL, Sung CT, Wang CC, Oakley BR (2013) An efficient system for heterologous expression of secondary metabolite genes in Aspergillus nidulans. J Am Chem Soc 135:7720–7731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corey EJ (2002) Catalytic enantioselective Diels–Alder reactions: methods, mechanistic fundamentals, pathways, and applications. Angew Chem Int Ed Engl 41:1650–1667

    Article  CAS  PubMed  Google Scholar 

  • Ezaki M, Muramatsu H, Takase S, Hashimoto M, Nagai K (2008) Naphthalecin, a novel antibiotic produced by the anaerobic bacterium, Sporotalea colonica sp. nov. J Antibiot (Tokyo) 61:207–212

    Article  CAS  Google Scholar 

  • Fujii R, Minami A, Gomi K, Oikawa H (2013) Biosynthetic assembly of cytochalasin backbone. Tetrahedron Lett 54:2999–3002

    Article  CAS  Google Scholar 

  • Ganzlin M, Rinas U (2008) In-depth analysis of the Aspergillus niger glucoamylase (glaA) promoter performance using high-throughput screening and controlled bioreactor cultivation techniques. J Biotechnol 135:266–271

    Article  CAS  PubMed  Google Scholar 

  • Halo LM, Marshall JW, Yakasai AA, Song Z, Butts CP, Crump MP, Heneghan M, Bailey AM, Simpson TJ, Lazarus CM, Cox RJ (2008) Authentic heterologous expression of the tenellin iterative polyketide synthase nonribosomal peptide synthetase requires coexpression with an enoyl reductase. Chembiochem 9:585–594

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto T, Hashimoto J, Teruya K, Hirano T, Shin-ya K, Ikeda H, Liu HW, Nishiyama M, Kuzuyama T (2015) Biosynthesis of versipelostatin: identification of an enzyme-catalyzed [4+2]-cycloaddition required for macrocyclization of spirotetronate-containing polyketides. J Am Chem Soc 137:572–575

    Article  CAS  PubMed  Google Scholar 

  • Hiort J, Maksimenka K, Reichert M, Perović-Ottstadt S, Lin WH, Wray V, Steube K, Schaumann K, Weber H, Proksch P, Ebel R, Müller WE, Bringmann G (2004) New natural products from the sponge-derivedfungus Aspergillus niger. J Nat Prod 67:1532–1543

    Google Scholar 

  • Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H (2006) Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora. Proc Natl Acad Sci U S A 103:14871–14876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishiuchi K, Nakazawa T, Yagishita F, Mino T, Noguchi H, Hotta K, Watanabe K (2013) Combinatorial generation of complexity by redox enzymes in the chaetoglobosin A biosynthesis. J Am Chem Soc 135:7371–7377

    Article  CAS  PubMed  Google Scholar 

  • Jadulco RC, Koch M, Kakule TB, Schmidt EW, Orendt A, He H, Janso JE, Carter GT, Larson EC, Pond C, Matainaho TK, Barrows LR (2014) Isolation of pyrrolocins A-C: cis- and trans-decalin tetramic acid antibiotics from an endophytic fungal-derived pathway. J Nat Prod 77:2537–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jäschke A, Seelig B (2000) Evolution of DNA and RNA as catalysts for chemical reactions. Curr Opin Chem Biol 4:257–262

    Article  PubMed  Google Scholar 

  • Jin FH, Maruyama J, Juvvadi PR, Akioka M, Kitamoto K (2004) Development of a novel quadruple auxotrophic host transformation system by argB gene disruption using adeA gene and exploiting adenine auxotrophy in Aspergillus oryzae. FEMS Microbiol Lett 239:79–85

    Article  CAS  PubMed  Google Scholar 

  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakule TB, Sardar D, Lin Z, Schmidt EW (2013) Two related pyrrolidinedione synthetase loci in Fusarium heterosporum ATCC 74349 produce divergent metabolites. ACS Chem Biol 8:1549–1557

    Article  CAS  PubMed  Google Scholar 

  • Kakule TB, Jadulco RC, Koch M, Janso JE, Barrows LR, Schmidt EW (2015) Native promoter strategy for high-yielding synthesis and engineering of fungal secondary metabolites. ACS Synth Biol 4:625–633

    Article  CAS  PubMed  Google Scholar 

  • Kasahara K, Miyamoto T, Fujimoto T, Oguri H, Tokiwano T, Oikawa H, Ebizuka Y, Fujii I (2010) Solanapyrone synthase, a possible Diels-Alderase and iterative type I polyketide synthase encoded in a biosynthetic gene cluster from Alternaria solani. Chembiochem 11:1245–1252

    Article  CAS  PubMed  Google Scholar 

  • Kato N, Nogawa T, Hirota H, Jang JH, Takahashi S, Ahn JS, Osada H (2015) A new enzyme involved in the control of the stereochemistry in the decalin formation during equisetin biosynthesis. Biochem Biophys Res Commun 460:210–215

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Ruszczycky MW, Choi SH, Liu YN, Liu HW (2011) Enzyme-catalysed [4+2] cycloaddition is a key step in the biosynthesis of spinosyn A. Nature 473:109–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krappmann S, Sasse C, Braus GH (2006) Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end- joining-deficient genetic background. Eukaryot Cell 5:212–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubodera T, Yamashita N, Nishimura A (2002) Transformation of Aspergillus sp. and Trichoderma reesei using the pyrithiamine resistance gene (ptrA) of Aspergillus oryzae. Biosci Biotechnol Biochem 66:404–406

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Weissman KJ, Müller R (2008) Myxochelin biosynthesis: direct evidence for two- and four-electron reduction of a carrier protein-bound thioester. J Am Chem Soc 130:7554–7555

    Article  CAS  PubMed  Google Scholar 

  • Lin HC, Chooi YH, Dhingra S, Xu W, Calvo AM, Tang Y (2013) The fumagillin biosynthetic gene cluster in Aspergillus fumigatus encodes a cryptic terpene cyclase involved in the formation of β-trans-bergamotene. J Am Chem Soc 135:4616–4619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H, Tsunematsu Y, Dhingra S, Xu W, Fukutomi M, Chooi YH, Cane DE, Calvo AM, Watanabe K, Tang Y (2014) Generation of complexity in fungal terpene biosynthesis: discovery of a multifunctional cytochrome P450 in the fumagillin pathway. J Am Chem Soc 136:4426–4436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Walsh CT (2009) Cyclopiazonic acid biosynthesis in Aspergillus sp.: characterization of a reductase-like R* domain in cyclopiazonate synthetase that forms and releases cyclo-acetoacetyl-L-tryptophan. Biochemistry 48:8746–8757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Löw I, Jahn W, Wieland T, Sekita S, Yoshihira K, Natori S (1979) Interaction between rabbit muscle actin and several chaetoglobosins or cytochalasins. Anal Biochem 95:14–18

    Article  PubMed  Google Scholar 

  • Ma SM, Li JWH, Choi JW, Lee KKM, Moorthie VA, Xie X, Kealey JT, Da Silva NA, Vederas JC, Tang Y (2009) Complete reconstitution of a highly reducing iterative polyketide synthase. Science 326:589–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer V, Arentshorst M, El-Ghezal A, Drews AC, Kooistra R, van den Hondel CA, Ram AF (2007) Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol 128:770–775

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa T, Ishiuchi K, Sato M, Tsunematsu Y, Sugimoto S, Gotanda Y, Noguchi H, Hotta K, Watanabe K (2013) Targeted disruption of transcriptional regulators in Chaetomium globosum activates biosynthetic pathways and reveals transcriptional regulator-like behavior of aureonitol. J Am Chem Soc 135:13446–13455

    Article  CAS  PubMed  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 101:12248–12253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oikawa H (2010) Diels-Alderases. In: Liu H-W, Mander L (eds) Comprehensive natural products II, vol 8. Elsevier, Oxford, pp 277–314

    Chapter  Google Scholar 

  • Oikawa H, Katayama K, Suzuki Y, Ichihara A (1995) Enzymatic activity catalyzingexo-selective Diels–Alder reaction in solanapyrone biosynthesis. J Chem Soc Chem Commun 13:1321–1322.

    Google Scholar 

  • Pahirulzaman KA, Williams K, Lazarus CM (2012) A toolkit for heterologous expression of metabolic pathways in Aspergillus oryzae. Methods Enzymol 517:241–260

    Article  CAS  PubMed  Google Scholar 

  • Preiswerk N, Beck T, Schulz JD, Milovník P, Mayer C, Siegel JB, Baker D, Hilvert D (2014) Impact of scaffold rigidity on the design and evolution of an artificial Diels-Alderase. Proc Natl Acad Sci U S A 111:8013–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Primm TP, Franzblau SG (2007) Recent advances in methodologies for the discovery of antimycobacterial drugs. Curr Bioact Compd 3:201–208

    Article  CAS  Google Scholar 

  • Qiao K, Chooi YH, Tang Y (2011) Identification and engineering of the cytochalasin gene cluster from Aspergillus clavatus NRRL 1. Metab Eng 13:723–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato M, Yagishita F, Mino T, Uchiyama N, Patel A, Chooi YH, Goda Y, Xu W, Noguchi H, Yamamoto T, Hotta K, Houk KN, Tang Y, Watanabe K (2015) Involvement of lipocalin-like CghA in decalin-forming stereoselective intramolecular [4+2] cycloaddition. Chembiochem 16:2294–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherlach K, Boettger D, Remme N, Hertweck C (2010) The chemistry and biology of cytochalasans. Nat Prod Rep 27:869–886

    Article  CAS  PubMed  Google Scholar 

  • Schlingmann G, Taniguchi T, He H, Bigelis R, Yang HY, Koehn FE, Carter GT, Berova N (2007) Reassessing the structure of pyranonigrin. J Nat Prod 70:1180–1187

    Article  CAS  PubMed  Google Scholar 

  • Schümann J, Hertweck C (2007) Molecular basis of cytochalasan biosynthesis in fungi: gene cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA silencing. J Am Chem Soc 129:9564–9565

    Article  PubMed  Google Scholar 

  • Sims JW, Schmidt EW (2008) Thioesterase-like role for fungal PKS–NRPS hybrid reductive domains. J Am Chem Soc 130:11149–11155

    Article  CAS  PubMed  Google Scholar 

  • Sims JW, Fillmore JP, Warner DD, Schmidt EW (2005) Equisetin biosynthesis in Fusarium heterosporum. Chem Commun 2:186–188

    Article  Google Scholar 

  • Song Z, Bakeer W, Marshall JW, Yakasai AA, Khalid RM, Collemare J, Skellam E, Tharreau D, Lebrun MH, Lazarus CM, Bailey AM, Simpson TJ, Cox RJ (2015) Heterologous expression of the avirulence gene ACE1 from the fungal rice pathogen Magnaporthe oryzae. Chem Sci 6:4837–4845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsunematsu Y, Ichinoseki S, Nakazawa T, Ishikawa N, Noguchi H, Hotta K, Watanabe K (2012) Overexpressing transcriptional regulator in Chaetomium globosum activates a silent biosynthetic pathway: evaluation of shanorellin biosynthesis. J Antibiot (Tokyo) 65:377–380

    Article  CAS  Google Scholar 

  • Tsunematsu Y, Ishikawa N, Wakana D, Goda Y, Noguchi H, Moriya H, Hotta K, Watanabe K (2013) Distinct mechanisms for spiro-carbon formation reveal biosynthetic pathway crosstalk. Nat Chem Biol 9:818–825

    Article  CAS  PubMed  Google Scholar 

  • Tsunematsu Y, Fukutomi M, Saruwatari T, Noguchi H, Hotta K, Tang Y, Watanabe K (2014) Elucidation of pseurotin biosynthetic pathway points to trans-acting C-methyltransferase: generation of chemical diversity. Angew Chem Int Ed 53:8475–8479

    Article  CAS  Google Scholar 

  • Weidner G, d’Enfert C, Koch A, Mol PC, Brakhage AA (1998) Development of a homologous transformation system for the human pathogenic fungus Aspergillus fumigatus based on the pyrG gene encoding orotidine 5′-monophosphate decarboxylase. Curr Genet 33:378–385

    Article  CAS  PubMed  Google Scholar 

  • Wiemann P, Guo CJ, Palmer JM, Sekonyela R, Wang CC, Keller NP (2013) Prototype of an intertwined secondary-metabolite supercluster. Proc Natl Acad Sci U S A 110:17065–17070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Yamamoto N, Janda KD (2004) Catalytic antibodies: hapten design strategies and screening methods. Bioorg Med Chem 12:5247–5268

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Tsunematsu Y, Noguchi H, Hotta K, Watanabe K (2015) Elucidation of pyranonigrin biosynthetic pathway reveals a mode of tetramic acid, fused γ-pyrone and exo-methylene formation. Org Lett 17:4992–4995

    Article  CAS  PubMed  Google Scholar 

  • Zou Y, Xu W, Tsunematsu Y, Tang MC, Watanabe K, Tang Y (2014) Methylation-dependent acyl transfer between polyketide synthase and nonribosomal peptide synthetase modules in fungal natural product biosynthesis. Org Lett 16:6390–6393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We wish to thank the financial support from the Japan Society for the Promotion of Science (JSPS) Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (No. G2604) (K.W.). This work was also supported in part by the Japan Society for the Promotion of Science (JSPS) (K.W., 15KT0068, 26560450), the Takeda Science Foundation (K.W.), the Institution of Fermentation at Osaka (K.W.), the Japan Antibiotics Research Association (K.W.), the Uehara Memorial Foundation (K.W.), and the Tokyo Biochemical Research Foundation (K.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kishimoto, S., Hirayama, Y., Watanabe, K. (2018). Polyketide Synthase–Nonribosomal Peptide Synthetase Hybrid Enzymes of Fungi. In: Anke, T., Schüffler, A. (eds) Physiology and Genetics. The Mycota, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-71740-1_12

Download citation

Publish with us

Policies and ethics