Movie Analytics and the Future of Film Finance. Are Oscars and Box Office Revenue Predictable?

  • Christophe Bruneel
  • Jean-Louis Guy
  • Dominique Haughton
  • Nicolas Lemercier
  • Mark-David McLaughlin
  • Kevin Mentzer
  • Quentin Vialle
  • Changan Zhang
Chapter
Part of the Media Business and Innovation book series (MEDIA)

Abstract

This chapter discusses to which extent modern analytics techniques can help us understand the success of movies, as measured by their box office or attributed Oscars. Interesting lessons emerge from our analyses. Predicting box office revenue on the basis of data available before the release of the movie remains difficult, even with state-of-the-art techniques. Prediction markets are a remarkably powerful tool at predicting success at Oscars. A moderate amount of controversy, as measured by the number of underlying themes raised by movie reviewers, may prove to be helpful in obtaining an Academy Award for Best Picture .

Keywords

Box office revenue Controversy Film financing Data mining Movie analytics Oscars Prediction markets Text mining 

References

  1. Bone, P. F. (1995). Word-of-mouth effects on short-term and long-term product judgments. Journal of Business Research, 32(3), 213–223.CrossRefGoogle Scholar
  2. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.CrossRefGoogle Scholar
  3. Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. Boca Raton, FL: CRC Press.Google Scholar
  4. Brown. C. (2015a). Key considerations in film finance. www.slated.com
  5. Brown, C. (2015b). Filmed entertainment as an attractive asset class. www.slated.com
  6. El Assady, M., Hafner, D., Hund, M., Jäger, A., Jentner, W., Rohrdantz, C., et al. (2013). Visual analytics for the prediction of movie rating and box office performance. IEEE VAST Challenge USB Proceedings.Google Scholar
  7. Erikson, R. S., & Wlezien, C. (2008). Are political markets really superior to polls as election predictors? Public Opinion Quarterly, 72(2), 190–215.CrossRefGoogle Scholar
  8. Freund, Y., & Schapire, R. E. (1996, July). Experiments with a new boosting algorithm. ICML, 96, 148–156.Google Scholar
  9. Gold, M., McClarren, R., & Gaughan, C. (2013). The lessons Oscar taught us. Data science and media & entertainment. Big Data, 1(2), 105–109.CrossRefGoogle Scholar
  10. Haughton, D., McLaughlin, M.-D., Mentzer, K., & Zhang, C. (2015). Movie analytics. A Hollywood introduction to big data. Heidelberg: Springer.Google Scholar
  11. Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning. A conditional inference framework. Journal of Computational and Graphical Statistics, 15(3), 651–674.CrossRefGoogle Scholar
  12. Leamer, E. E. (2008). What’s a recession, anyway? (NBER working paper). National Bureau of Economic Research. http://www.nber.org/papers/w14221
  13. Leonhardt, D. (2015, February 23). Oscars 2015. An excellent night for prediction markets. The New York Times.Google Scholar
  14. Liu, B. (2011). Web data mining: exploring hyperlinks, contents, and usage data. Berlin: Springer.Google Scholar
  15. McKenzie, J. (2012). The economics of movies. A literature survey. Journal of Economic Surveys, 26(1), 42–70.CrossRefGoogle Scholar
  16. Mestyán, M., Yasseri, T., & Kertész, J. (2013). Early prediction of movie box office success based on Wikipedia activity big data. PLoS One, 8(8), e71226.  https://doi.org/10.1371/journal.pone.0071226 CrossRefGoogle Scholar
  17. O’Leary, S., & Sheehan, K. (2008). Building buzz to beat the big boys: word-of-mouth marketing for small businesses. Westport, CT: Praeger.Google Scholar
  18. Rothschild, D., & Wolfers, J. (2008). Market manipulation muddies election outlook. http://online.wsj.com/article/SB122283114935193363.html
  19. Saxon, I. (2010). Intrade prediction market accuracy and efficiency. An analysis of the 2004 and 2008 Democratic Presidential Nomination Contests. Dissertation, University of Nottingham.Google Scholar
  20. Shambaugh, J. C. (2012). The Euro’s three crises. Brookings Papers on Economic Activity, 43, 157–231.CrossRefGoogle Scholar
  21. Zhang, Z., & Li, X. (2010). Controversy in marketing. Mining sentiments in social media. In Proceedings of the 43rd Hawaii international conference on systems sciences.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Christophe Bruneel
    • 1
    • 5
  • Jean-Louis Guy
    • 1
    • 5
  • Dominique Haughton
    • 2
    • 3
    • 4
  • Nicolas Lemercier
    • 5
  • Mark-David McLaughlin
    • 2
    • 6
  • Kevin Mentzer
    • 7
  • Quentin Vialle
    • 8
    • 9
  • Changan Zhang
    • 10
  1. 1.Toulouse School of EconomicsToulouseFrance
  2. 2.Bentley UniversityWalthamUSA
  3. 3.SAMMUniversité Paris 1ParisFrance
  4. 4.TSE-RUniversité Toulouse 1ToulouseFrance
  5. 5.Université Toulouse 1ToulouseFrance
  6. 6.Cisco SystemsSan JoseUSA
  7. 7.Bryant UniversitySmithfieldUSA
  8. 8.InboxMalakoffFrance
  9. 9.Université ToulouseToulouseFrance
  10. 10.CTripShanghaiChina

Personalised recommendations