Other Electrolyte Abnormalities

Chapter

Abstract

Electrolyte derangements affecting magnesium, calcium, and phosphorus are common in the surgical ICU and may lead to life-threatening conditions. Measurements can be affected by multiple factors including drugs, volume status, renal function, and even the presence of other electrolyte abnormalities. Although routine replacements to achieve normal values are a common practice, their effect on outcomes remains debatable. In addition, whether these electrolyte abnormalities themselves lead to worse outcomes or they comprise a marker for the degree of illness is also controversial. In this chapter, we provide a clinically relevant review of these electrolyte abnormalities with the goal to provide the clinician with useful information that can be utilized in the daily management of the critically ill surgical patient.

Keywords

Hypomagnesemia Hypermagnesemia Hypocalcemia Hypercalcemia Hypophosphatemia Hyperphosphatemia 

References

  1. 1.
    Ryzen E, Wagers PW, Singer FR, Rude RK. Magnesium deficiency in a medical ICU population. Crit Care Med. 1985;13(1):19–21.CrossRefGoogle Scholar
  2. 2.
    Denny JT, et al. Lower incidence of hypo-magnesemia in surgical intensive care unit patients in 2011 versus 2001. J Clin Med Res. 2015;7(4):253–6.CrossRefGoogle Scholar
  3. 3.
    Fairley J, Glassford NJ, Zhang L, Bellomo R. Magnesium status and magnesium therapy in critically ill patients: a systematic review. J Crit Care. 2015;30(6):1349–58.CrossRefGoogle Scholar
  4. 4.
    Elin RJ. Assessment of magnesium status for diagnosis and therapy. Magnes Res. 2010;23(4):S194–8.PubMedGoogle Scholar
  5. 5.
    Elin RJ. Assessment of magnesium status. Clin Chem. 1987;33(11):1965–70.PubMedGoogle Scholar
  6. 6.
    Noronha JL, Matuschak GM. Magnesium in critical illness: metabolism, assessment, and treatment. Intensive Care Med. 2002;28(6):667–79.CrossRefGoogle Scholar
  7. 7.
    Hexum T, Samson FE, Himes RH. Kinetic studies of membrane (Na+-K+-Mg2+)-ATPase. Biochim Biophys Acta. 1970;212(2):322–31.CrossRefGoogle Scholar
  8. 8.
    Grubbs RD, Maguire ME. Magnesium as a regulatory cation: criteria and evaluation. Magnesium. 1987;6(3):113–27.PubMedGoogle Scholar
  9. 9.
    Tong GM, Rude RK. Magnesium deficiency in critical illness. J Intensive Care Med. 2005;20(1):3–17.CrossRefGoogle Scholar
  10. 10.
    Weglicki WB, Phillips TM. Pathobiology of magnesium deficiency: a cytokine/neurogenic inflammation hypothesis. Am J Phys. 1992;263(3 Pt 2):R734–7.Google Scholar
  11. 11.
    Nakagawa M, Oono H, Nishio A. Enhanced production of IL-1beta and IL-6 following endotoxin challenge in rats with dietary magnesium deficiency. J Vet Med Sci. 2001;63(4):467–9.CrossRefGoogle Scholar
  12. 12.
    Cao Z, Tongate C, Elin RJ. Evaluation of AVL988/4 analyzer for measurement of ionized magnesium and ionized calcium. Scand J Clin Lab Invest. 2001;61(5):389–94.CrossRefGoogle Scholar
  13. 13.
    Hébert P, Mehta N, Wang J, Hindmarsh T, Jones G, Cardinal P. Functional magnesium deficiency in critically ill patients identified using a magnesium-loading test. Crit Care Med. 1997;25(5):749–55.CrossRefGoogle Scholar
  14. 14.
    Whang R. Magnesium deficiency: pathogenesis, prevalence, and clinical implications. Am J Med. 1987;82(3A):24–9.CrossRefGoogle Scholar
  15. 15.
    Smith GA, Tompkins RK. Biliary magnesium loss in the postoperative patient. Arch Surg. 1974;109(1):77–9.CrossRefGoogle Scholar
  16. 16.
    Nyhlin H, Dyckner T, Ek B, Wester PO. Plasma and skeletal muscle electrolytes in patients with Crohn’s disease. J Am Coll Nutr. 1985;4(5):531–8.CrossRefGoogle Scholar
  17. 17.
    Cole DE, Quamme GA. Inherited disorders of renal magnesium handling. J Am Soc Nephrol. 2000;11(10):1937–47.PubMedGoogle Scholar
  18. 18.
    Ryan MP. Diuretics and potassium/magnesium depletion. Directions for treatment. Am J Med. 1987;82(3A):38–47.CrossRefGoogle Scholar
  19. 19.
    Rude RK, Oldham SB, Singer FR. Functional hypoparathyroidism and parathyroid hormone end-organ resistance in human magnesium deficiency. Clin Endocrinol. 1976;5(3):209–24.CrossRefGoogle Scholar
  20. 20.
    Rude RK. Magnesium metabolism and deficiency. Endocrinol Metab Clin N Am. 1993;22(2):377–95.Google Scholar
  21. 21.
    Vallee BL, Wacker WE, Ulmer DD. The magnesium-deficiency tetany syndrome in man. N Engl J Med. 1960;262(4):155–61.CrossRefGoogle Scholar
  22. 22.
    Wacker WEC, et al. Normocalcemic magnesium deficiency tetany. JAMA. 1962;180(2):161.CrossRefGoogle Scholar
  23. 23.
    Tsuji H, Venditti FJ, Evans JC, Larson MG, Levy D. The associations of levels of serum potassium and magnesium with ventricular premature complexes (the Framingham Heart Study). Am J Cardiol. 1994;74(3):232–5.CrossRefGoogle Scholar
  24. 24.
    Kelly RA, Smith TW. Recognition and management of digitalis toxicity. Am J Cardiol. 1992;69(18):108G–18G; disc. 118G–19G.CrossRefGoogle Scholar
  25. 25.
    Fatemi S, Ryzen E, Flores J, Endres DB, Rude RK. Effect of experimental human magnesium depletion on parathyroid hormone secretion and 1,25-dihydroxyvitamin D metabolism. J Clin Endocrinol Metab. 1991;73(5):1067–72.CrossRefGoogle Scholar
  26. 26.
    Whang R, Ryder KW. Frequency of hypomagnesemia and hypermagnesemia. Requested vs routine. JAMA. 1990;263(22):3063–4.CrossRefGoogle Scholar
  27. 27.
    Whang R, Whang DD, Ryan MP. Refractory potassium repletion. A consequence of magnesium deficiency. Arch Intern Med. 1992;152(1):40–5.CrossRefGoogle Scholar
  28. 28.
    Tzivoni D, et al. Treatment of torsade de pointes with magnesium sulfate. Circulation. 1988;77(2):392–7.CrossRefGoogle Scholar
  29. 29.
    Thel MC, Armstrong AL, McNulty SE, Califf RM, O’Connor CM. Randomised trial of magnesium in in-hospital cardiac arrest. Duke Internal Medicine Housestaff. Lancet (London, UK). 1997;350(9087):1272–6.CrossRefGoogle Scholar
  30. 30.
    Ryan MP. Interrelationships of magnesium and potassium homeostasis. Miner Electrolyte Metab. 1993;19(4–5):290–5.PubMedGoogle Scholar
  31. 31.
    Kraft MD, Btaiche IF, Sacks GS, Kudsk KA. Treatment of electrolyte disorders in adult patients in the intensive care unit. Am J Health Syst Pharm. 2005;62(16):1663–82.CrossRefGoogle Scholar
  32. 32.
    Ryzen E, Nelson TA, Rude RK. Low blood mononuclear cell magnesium content and hypocalcemia in normomagnesemic patients. West J Med. 1987;147(5):549–53.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Altman D, et al. Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie Trial: a randomised placebo-controlled trial. Lancet (London, UK). 2002;359(9321):1877–90.CrossRefGoogle Scholar
  34. 34.
    Cao Z, Bideau R, Valdes R, Elin RJ. Acute hypermagnesemia and respiratory arrest following infusion of MgSO4 for tocolysis. Clin Chim Acta. 1999;285(1–2):191–3.CrossRefGoogle Scholar
  35. 35.
    Baker SB, Worthley LIG. The essentials of calcium, magnesium and phosphate metabolism: part I. Physiology. Crit Care Resusc. 2002;4(4):301–6.PubMedGoogle Scholar
  36. 36.
    Forman DT, Lorenzo L. Ionized calcium: its significance and clinical usefulness. Ann Clin Lab Sci. 1991;21(5):297–304.PubMedGoogle Scholar
  37. 37.
    Kelly A, Levine MA. Hypocalcemia in the critically ill patient. J Intensive Care Med. 2013;28(3):166–77.CrossRefGoogle Scholar
  38. 38.
    Zaloga GP, Willey S, Tomasic P, Chernow B. Free fatty acids alter calcium binding: a cause for misinterpretation of serum calcium values and hypocalcemia in critical illness. J Clin Endocrinol Metab. 1987;64(5):1010–4.CrossRefGoogle Scholar
  39. 39.
    Aberegg SK. Ionized calcium in the ICU: should it be measured and corrected? Chest. 2016;149(3):846–55.CrossRefGoogle Scholar
  40. 40.
    Bushinsky DA, Monk RD. Electrolyte quintet: Calcium. Lancet. 1998;352(9124):306–11.CrossRefGoogle Scholar
  41. 41.
    Desai TK, Carlson RW, Geheb MA. Prevalence and clinical implications of hypocalcemia in acutely ill patients in a medical intensive care setting. Am J Med. 1988;84(2):209–14.CrossRefGoogle Scholar
  42. 42.
    Forsythe RM, Wessel CB, Billiar TR, Angus DC, Rosengart MR. Parenteral calcium for intensive care unit patients. Cochrane Database Syst Rev. 2008;(4):CD006163.Google Scholar
  43. 43.
    Collage RD, et al. Calcium supplementation during sepsis exacerbates organ failure and mortality via calcium/calmodulin-dependent protein kinase kinase signaling. Crit Care Med. 2013;41(11):e352–60.CrossRefGoogle Scholar
  44. 44.
    Lind L, et al. Hypocalcemia and parathyroid hormone secretion in critically ill patients. Crit Care Med. 2000;28(1):93–9.CrossRefGoogle Scholar
  45. 45.
    Bai M, et al. Citrate versus heparin anticoagulation for continuous renal replacement therapy: an updated meta-analysis of RCTs. Intensive Care Med. 2015;41(12):2098–110.CrossRefGoogle Scholar
  46. 46.
    Steele T, Kolamunnage-Dona R, Downey C, Toh C-H, Welters I. Assessment and clinical course of hypocalcemia in critical illness. Crit Care. 2013;17(3):R106.CrossRefGoogle Scholar
  47. 47.
    Ho KM, Yip CB. Concentration-dependent effect of hypocalcaemia on in vitro clot strength in patients at risk of bleeding: a retrospective cohort study. Transfus Med. 2016;26(1):57–62.CrossRefGoogle Scholar
  48. 48.
    Maier JD, Levine SN. Hypercalcemia in the intensive care unit: a review of pathophysiology, diagnosis, and modern therapy. J Intensive Care Med. 2015;30(5):235–52.CrossRefGoogle Scholar
  49. 49.
    Bilezikian JP, et al. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the fourth international workshop. J Clin Endocrinol Metab. 2014;99(10):3561–9.CrossRefGoogle Scholar
  50. 50.
    Marino PL. The ICU book. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2007.Google Scholar
  51. 51.
    Stewart AF. Clinical practice. Hypercalcemia associated with cancer. N Engl J Med. 2005;352(4):373–9.CrossRefGoogle Scholar
  52. 52.
    Geerse DA, Bindels AJ, Kuiper MA, Roos AN, Spronk PE, Schultz MJ. Treatment of hypophosphatemia in the intensive care unit: a review. Crit Care. 2010;14(4):R147.CrossRefGoogle Scholar
  53. 53.
    Slatapolsky E, Hruska K. Disorders of phosphorus, calcium, and magnesium metabolism. In: Schrier R, editor. Diseases of the kidneys and urinary tract. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2001.Google Scholar
  54. 54.
    Lederer E. Regulation of serum phosphate. J Physiol. 2014;592(18):3985–95.CrossRefGoogle Scholar
  55. 55.
    Blaine J, Chonchol M, Levi M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin J Am Soc Nephrol. 2015;10(7):1257–72.CrossRefGoogle Scholar
  56. 56.
    Daily WH, Tonnesen AS, Allen SJ. Hypophosphatemia – incidence, etiology, and prevention in the trauma patient. Crit Care Med. 1990;18(11):1210–4.CrossRefGoogle Scholar
  57. 57.
    Polderman KH, Bloemers FW, Peerdeman SM, Girbes AR. Hypomagnesemia and hypophosphatemia at admission in patients with severe head injury. Crit Care Med. 2000;28(6):2022–5.CrossRefGoogle Scholar
  58. 58.
    Berger MM, Rothen C, Cavadini C, Chiolero RL. Exudative mineral losses after serious burns: a clue to the alterations of magnesium and phosphate metabolism. Am J Clin Nutr. 1997;65(5):1473–81.CrossRefGoogle Scholar
  59. 59.
    Zazzo JF, Troché G, Ruel P, Maintenant J. High incidence of hypophosphatemia in surgical intensive care patients: efficacy of phosphorus therapy on myocardial function. Intensive Care Med. 1995;21(10):826–31.CrossRefGoogle Scholar
  60. 60.
    Salem RR, Tray K. Hepatic resection-related hypophosphatemia is of renal origin as manifested by isolated hyperphosphaturia. Ann Surg. 2005;241(2):343–8.CrossRefGoogle Scholar
  61. 61.
    Shor R, et al. Severe hypophosphatemia in sepsis as a mortality predictor. Ann Clin Lab Sci. 2006;36(1):67–72.PubMedGoogle Scholar
  62. 62.
    Yang Y, et al. Hypophosphatemia during continuous veno-venous hemofiltration is associated with mortality in critically ill patients with acute kidney injury. Crit Care. 2013;17(5):R205.CrossRefGoogle Scholar
  63. 63.
    Paleologos M, Stone E, Braude S. Persistent, progressive hypophosphataemia after voluntary hyperventilation. Clin Sci (Lond). 2000;98(5):619–25.CrossRefGoogle Scholar
  64. 64.
    Kjeldsen SE, Moan A, Petrin J, Weder AB, Julius S. Effects of increased arterial epinephrine on insulin, glucose and phosphate. Blood Press. 1996;5(1):27–31.CrossRefGoogle Scholar
  65. 65.
    Murer H, Hernando N, Forster I, Biber J. Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev. 2000;80(4):1373–409.CrossRefGoogle Scholar
  66. 66.
    Barak V, Schwartz A, Kalickman I, Nisman B, Gurman G, Shoenfeld Y. Prevalence of hypophosphatemia in sepsis and infection: the role of cytokines. Am J Med. 1998;104(1):40–7.CrossRefGoogle Scholar
  67. 67.
    Cohen J, Kogan A, Sahar G, Lev S, Vidne B, Singer P. Hypophosphatemia following open heart surgery: incidence and consequences. Eur J Cardiothorac Surg. 2004;26(2):306–10.CrossRefGoogle Scholar
  68. 68.
    George R, Shiu MH. Hypophosphatemia after major hepatic resection. Surgery. 1992;111(3):281–6.PubMedGoogle Scholar
  69. 69.
    Polderman KH, Peerdeman SM, Girbes AR. Hypophosphatemia and hypomagnesemia induced by cooling in patients with severe head injury. J Neurosurg. 2001;94(5):697–705.CrossRefGoogle Scholar
  70. 70.
    Marinella MA. Refeeding syndrome and hypophosphatemia. J Intensive Care Med. 2005;20(3):155–9.CrossRefGoogle Scholar
  71. 71.
    English P, Williams G. Hyperglycaemic crises and lactic acidosis in diabetes mellitus. Postgrad Med J. 2004;80(943):253–61.CrossRefGoogle Scholar
  72. 72.
    Troyanov S, Geadah D, Ghannoum M, Cardinal J, Leblanc M. Phosphate addition to hemodiafiltration solutions during continuous renal replacement therapy. Intensive Care Med. 2004;30(8):1662–5.CrossRefGoogle Scholar
  73. 73.
    Aubier M, et al. Effect of hypophosphatemia on diaphragmatic contractility in patients with acute respiratory failure. N Engl J Med. 1985;313(7):420–4.CrossRefGoogle Scholar
  74. 74.
    Alsumrain MH, Jawad SA, Imran NB, Riar S, DeBari VA, Adelman M. Association of hypophosphatemia with failure-to-wean from mechanical ventilation. Ann Clin Lab Sci. 2010;40(2):144–8.PubMedGoogle Scholar
  75. 75.
    Agusti AG, Torres A, Estopa R, Agustividal A. Hypophosphatemia as a cause of failed weaning: the importance of metabolic factors. Crit Care Med. 1984;12(2):142–3.CrossRefGoogle Scholar
  76. 76.
    O’Connor LR, Wheeler WS, Bethune JE. Effect of hypophosphatemia on myocardial performance in man. N Engl J Med. 1977;297(17):901–3.CrossRefGoogle Scholar
  77. 77.
    Ognibene A, et al. Ventricular tachycardia in acute myocardial infarction: the role of hypophosphatemia. South Med J. 1994;87(1):65–9.CrossRefGoogle Scholar
  78. 78.
    Schwartz A, et al. Association between hypophosphatemia and cardiac arrhythmias in the early stage of sepsis: could phosphorus replacement treatment reduce the incidence of arrhythmias? Electrolyte Blood Press. 2014;12(1):19.CrossRefGoogle Scholar
  79. 79.
    Lentz RD, Brown DM, Kjellstrand CM. Treatment of severe hypophosphatemia. Ann Intern Med. 1978;89(6):941–4.CrossRefGoogle Scholar
  80. 80.
    Fisher J, et al. Respiratory illness and hypophosphatemia. Chest. 1983;83(3):504–8.CrossRefGoogle Scholar
  81. 81.
    Svagzdiene M, Sirvinskas E. Changes in serum electrolyte levels and their influence on the incidence of atrial fibrillation after coronary artery bypass grafting surgery. Medicina (Kaunas). 2006;42(3):208–14.Google Scholar
  82. 82.
    Demirjian S, et al. Hypophosphatemia during continuous hemodialysis is associated with prolonged respiratory failure in patients with acute kidney injury. Nephrol Dial Transplant. 2011;26(11):3508–14.CrossRefGoogle Scholar
  83. 83.
    Bellomo R, et al. The relationship between hypophosphataemia and outcomes during low-intensity and high-intensity continuous renal replacement therapy. Crit Care Resusc. 2014;16(1):34–41.PubMedGoogle Scholar
  84. 84.
    Bollaert PE, Levy B, Nace L, Laterre PF, Larcan A. Hemodynamic and metabolic effects of rapid correction of hypophosphatemia in patients with septic shock. Chest. 1995;107(6):1698–701.CrossRefGoogle Scholar
  85. 85.
    Haider DG, et al. Hyperphosphatemia is an independent risk factor for mortality in critically ill patients: results from a cross-sectional study. PLoS One. 2015;10(8):e0133426.CrossRefGoogle Scholar
  86. 86.
    Voormolen N, et al. High plasma phosphate as a risk factor for decline in renal function and mortality in pre-dialysis patients. Nephrol Dial Transplant. 2007;22(10):2909–16.CrossRefGoogle Scholar
  87. 87.
    Mirrakhimov AE, Ali AM, Khan M, Barbaryan A. Tumor lysis syndrome in solid tumors: an up to date review of the literature. Rare Tumors. 2014;6(2):5389.CrossRefGoogle Scholar
  88. 88.
    Higaki M, Tanemoto M, Shiraishi T, Taniguchi K, Fujigaki Y, Uchida S. Acute kidney injury facilitates hypocalcemia by exacerbating the hyperphosphatemic effect of muscle damage in rhabdomyolysis. Nephron. 2015;131(1):11–6.CrossRefGoogle Scholar
  89. 89.
    Larner AJ. Pseudohyperphosphatemia. Clin Biochem. 1995;28(4):391–3.CrossRefGoogle Scholar
  90. 90.
    Bohm NM, Hoover KC, Wahlquist AE, Zhu Y, Velez JCQ. Case-control study and case series of pseudohyperphosphatemia during exposure to liposomal amphotericin B. Antimicrob Agents Chemother. 2015;59(11):6816–23.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Surgery, Division of Acute Care Surgery and Surgical Critical CareCedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations