SIRS/Sepsis/Septic Shock/MOSF

Chapter

Abstract

The systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), and multiple organ failure (MOF) refer to a spectrum of physiologic changes resulting from a dysfunctional immune response to infection or tissue injury. Sepsis and septic shock refer to conditions due specifically to the host’s response to infection. In the mildest form, this dysfunctional immune response manifests as SIRS. More severe states progress to end organ dysfunction and failure which have been characterized by a numerous definitions and scoring systems, each with particular advantages and disadvantages.

Keywords

SIRS MOF Sepsis Septic shock MODS Inflammatory response Immune system 

References

  1. 1.
    Sauaia A, Moore EE, Johnson JL, Ciesla DJ, Biffl WL, Banerjee A. Validation of postinjury multiple organ failure scores. Shock. 2009;31(5):438–47.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Raith EP, Udy AA, Bailey M, McGloughlin S, MacIsaac C, Bellomo R, Pilcher DV, Australian, New Zealand Intensive Care Society Centre for, O, Resource, E. Prognostic accuracy of the SOFA score, SIRS criteria, and qSOFA score for in-hospital mortality among adults with suspected infection admitted to the intensive care unit. JAMA. 2017;317(3):290–300.CrossRefPubMedGoogle Scholar
  3. 3.
    Williams JM, Greenslade JH, McKenzie JV, Chu K, Brown AF, Lipman J. Systemic inflammatory response syndrome, quick sequential organ function assessment, and organ dysfunction: insights from a prospective database of ED patients with infection. Chest. 2017;151(3):586–96.CrossRefPubMedGoogle Scholar
  4. 4.
    Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Eiseman B, Beart R, Norton L. Multiple organ failure. Surg Gynecol Obstet. 1977;144(3):323–6.PubMedGoogle Scholar
  6. 6.
    Eiseman B, Sloan R, Hansbrough J, McIntosh R. Multiple organ failure: clinical and experimental. Am Surg. 1980;46(1):14–9.PubMedGoogle Scholar
  7. 7.
    Faist E, Baue AE, Dittmer H, Heberer G. Multiple organ failure in polytrauma patients. J Trauma. 1983;23(9):775–87.CrossRefPubMedGoogle Scholar
  8. 8.
    Moore FA, Moore EE. Evolving concepts in the pathogenesis of postinjury multiple organ failure. Surg Clin North Am. 1995;75(2):257–77.CrossRefPubMedGoogle Scholar
  9. 9.
    Ciesla DJ, Moore EE, Johnson JL, Burch JM, Cothren CC, Sauaia A. A 12-year prospective study of postinjury multiple organ failure: has anything changed? Arch Surg. 2005;140(5):432–8; discussion 438-440.CrossRefPubMedGoogle Scholar
  10. 10.
    Sauaia A, Moore EE, Johnson JL, Chin TL, Banerjee A, Sperry JL, Maier RV, Burlew CC. Temporal trends of postinjury multiple-organ failure: still resource intensive, morbid, and lethal. J Trauma Acute Care Surg. 2014;76(3):582–92, discussion 592-583.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Nast-Kolb D, Aufmkolk M, Rucholtz S, Obertacke U, Waydhas C. Multiple organ failure still a major cause of morbidity but not mortality in blunt multiple trauma. J Trauma. 2001;51(5):835–41; discussion 841-832.CrossRefPubMedGoogle Scholar
  12. 12.
    Moore EE, Moore FA, Harken AH, Johnson JL, Ciesla D, Banerjee A. The two-event construct of postinjury multiple organ failure. Shock. 2005;24(Suppl 1):71–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Meneshian A, Bulkley GB. The physiology of endothelial xanthine oxidase: from urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation. 2002;9(3):161–75.CrossRefPubMedGoogle Scholar
  14. 14.
    Raoof M, Zhang Q, Itagaki K, Hauser CJ. Mitochondrial peptides are potent immune activators that activate human neutrophils via FPR-1. J Trauma. 2010;68(6):1328–32; discussion 1332-1324.CrossRefPubMedGoogle Scholar
  15. 15.
    Hauser CJ, Sursal T, Rodriguez EK, Appleton PT, Zhang Q, Itagaki K. Mitochondrial damage associated molecular patterns from femoral reamings activate neutrophils through formyl peptide receptors and P44/42 MAP kinase. J Orthop Trauma. 2010;24(9):534–8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Krysko DV, Agostinis P, Krysko O, Garg AD, Bachert C, Lambrecht BN, Vandenabeele P. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol. 2011;32(4):157–64.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kuipers MT, van der Poll T, Schultz MJ, Wieland CW. Bench-to-bedside review: damage-associated molecular patterns in the onset of ventilator-induced lung injury. Crit Care. 2011;15(6):235.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Raymond SL, Holden DC, Mira JC, Stortz JA, Loftus TJ, Mohr AM, Moldawer LL, Moore FA, Larson SD, Efron PA. Microbial recognition and danger signals in sepsis and trauma. Biochim Biophys Acta. 2017;1863(10 Pt B):2564–73.CrossRefGoogle Scholar
  19. 19.
    Windsor AC, Mullen PG, Fowler AA, Sugerman HJ. Role of the neutrophil in adult respiratory distress syndrome. Br J Surg. 1993;80(1):10–7.CrossRefGoogle Scholar
  20. 20.
    Borregaard N, Cowland JB. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood. 1997;89(10):3503–21.PubMedGoogle Scholar
  21. 21.
    Botha AJ, Moore FA, Moore EE, Kim FJ, Banerjee A, Peterson VM. Postinjury neutrophil priming and activation: an early vulnerable window. Surgery. 1995;118(2):358–64; discussion 364-355.CrossRefPubMedGoogle Scholar
  22. 22.
    Moore EE, Moore FA, Franciose RJ, Kim FJ, Biffl WL, Banerjee A. The postischemic gut serves as a priming bed for circulating neutrophils that provoke multiple organ failure. J Trauma. 1994;37(6):881–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Hassoun HT, Kone BC, Mercer DW, Moody FG, Weisbrodt NW, Moore FA. Post-injury multiple organ failure: the role of the gut. Shock. 2001;15(1):1–10.CrossRefPubMedGoogle Scholar
  24. 24.
    Moore EE. Mesenteric lymph: the critical bridge between dysfunctional gut and multiple organ failure. Shock. 1998;10(6):415–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Sauaia A, Moore FA, Moore EE. Postinjury inflammation and organ dysfunction. Crit Care Clin. 2017;33(1):167–91.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mira JC, Brakenridge SC, Moldawer LL, Moore FA. Persistent inflammation, immunosuppression and catabolism syndrome. Crit Care Clin. 2017;33(2):245–58.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Balogh Z, McKinley BA, Cocanour CS, Kozar RA, Valdivia A, Sailors RM, Moore FA. Supranormal trauma resuscitation causes more cases of abdominal compartment syndrome. Arch Surg. 2003;138(6):637–42; discussion 642-633.CrossRefGoogle Scholar
  28. 28.
    Joseph B, Zangbar B, Pandit V, Vercruysse G, Aziz H, Kulvatunyou N, Wynne J, O’Keeffe T, Tang A, Friese RS, Rhee P. The conjoint effect of reduced crystalloid administration and decreased damage-control laparotomy use in the development of abdominal compartment syndrome. J Trauma Acute Care Surg. 2014;76(2):457–61.CrossRefPubMedGoogle Scholar
  29. 29.
    Joseph B, Azim A, Zangbar B, Bauman Z, O’Keeffe T, Ibraheem K, Kulvatunyou N, Tang A, Latifi R, Rhee P. Improving mortality in trauma laparotomy through the evolution of damage control resuscitation: analysis of 1,030 consecutive trauma laparotomies. J Trauma Acute Care Surg. 2017;82(2):328–33.CrossRefPubMedGoogle Scholar
  30. 30.
    Silliman CC. The two-event model of transfusion-related acute lung injury. Crit Care Med. 2006;34(5 Suppl):S124–31.CrossRefPubMedGoogle Scholar
  31. 31.
    Taeger G, Ruchholtz S, Waydhas C, Lewan U, Schmidt B, Nast-Kolb D. Damage control orthopedics in patients with multiple injuries is effective, time saving, and safe. J Trauma. 2005;59(2):409–16; discussion 417.CrossRefPubMedGoogle Scholar
  32. 32.
    Ciesla DJ, Moore EE, Johnson JL, Burch JM, Cothren CC, Sauaia A. The role of the lung in postinjury multiple organ failure. Surgery. 2005;138(4):749–57; discussion 757-748.CrossRefPubMedGoogle Scholar
  33. 33.
    dos Santos CC, Slutsky AS. The contribution of biophysical lung injury to the development of biotrauma. Annu Rev Physiol. 2006;68:585–618.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Nathens AB, Johnson JL, Minei JP, Moore EE, Shapiro M, Bankey P, Freeman B, Harbrecht BG, Lowry SF, McKinley B, Moore F, West M, Maier RV. Inflammation and the host response to injury, a large-scale collaborative project: patient-oriented research Core – standard operating procedures for clinical care. I. Guidelines for mechanical ventilation of the trauma patient. J Trauma. 2005;59(3):764–9.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of SurgeryUniversity of South Florida College of MedicineTampaUSA

Personalised recommendations