Antibiotic and Antifungal Therapy in the ICU

  • Mitchell J. Daley
  • Emily K. Hodge
  • Dusten T. Rose
Chapter

Abstract

Few diseases challenge the critical care provider as frequent as the prevention or treatment of an infection. Patient outcomes are determined based on the interplay of an anti-infective drug, host, and pathogen. Although a complete discussion of each of these components is outside of the scope of this chapter, general knowledge of antimicrobial pharmacokinetics-pharmacodynamics and associated alterations in critically ill will be reviewed. Specific indications for antimicrobials will be discussed in other sections of this book. The remaining purpose of this chapter is to understand the pharmacologic properties of commonly used antibiotics and antifungals prescribed in the ICU, with an emphasis on mechanism of action, spectrum of activity, clinical pearls, and strategies to optimize therapy organized by drug classes.

Keywords

Antibiotic Anti-infective Pharmacology Pharmacokinetics Pharmacodynamics Critically ill 

Abbreviations

5-FC

Flucytosine

ABLC

Amphotericin B lipid complex

ADR

Adverse drug reaction

AMB-d

Amphotericin B deoxycholate

AMG

Aminoglycoside

ARC

Augmented renal clearance

AUC

Area under the curve

Cmax

Peak drug concentration

CNS

Central nervous system

CPK

Creatinine phosphokinase

CrCl

Creatinine clearance

CRE

Carbapenem-resistant Enterobacteriaceae

CRRT

Continuous renal replacement therapy

CSF

Cerebrospinal fluid

ESBL

Extended-spectrum β-lactamase

FDA

Food and Drug Administration

FLQ

Fluoroquinolones

hVISA

Heterogeneous vancomycin-intermediate Staphylococcus aureus

ICU

Intensive care unit

IHD

Intermittent hemodialysis

INR

International normalized ratio

L-AMB

Liposomal amphotericin B

MAOI

Monoamine oxidase inhibitor

MDR

Multidrug resistant

MIC

Minimum inhibitory concentration

MRSA

Methicillin resistant Staphylococcus aureus

MSSA

Methicillin susceptible Staphylococcus aureus

NS

Nonsusceptible

PAE

Post-antibiotic effect

PBP

Penicillin binding protein

PCN

Penicillin

PD

Pharmacodynamics

PK

Pharmacokinetics

SMX

Sulfamethoxazole

SSTI

Skin and soft tissue infection

TMP

Trimethoprim

Vd

Volume of distribution

VISA

Vancomycin-intermediate Staphylococcus aureus

VRE

Vancomycin-resistant enterococcus

VRSA

Vancomycin-resistant Staphylococcus aureus

References

  1. 1.
    Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10.CrossRefGoogle Scholar
  2. 2.
    Vincent JL, Rellow J, Marshall J, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302:2323–9.CrossRefGoogle Scholar
  3. 3.
    Pai MP, Cottrell ML, Kashuba ADM, et al. Pharmacokinetics and pharmacodynamics of anti-infective agents. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 252–62.Google Scholar
  4. 4.
    Blumenthal DK, Garrison JC. Pharmacodynamics: molecular mechanisms of drug action. In: Brunton LL, Chabner BA, Knollman BC, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill; 2011. p. 97–146.Google Scholar
  5. 5.
    Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of β-lactams, glycopeptides, and linezolid. Infect Dis Clin N Am. 2003;17:479–501.CrossRefGoogle Scholar
  6. 6.
    Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill. Crit Care Med. 2009;37:840–51.CrossRefGoogle Scholar
  7. 7.
    Lodise TP, Lomaestro BM, Drusano GL. Application of antimicrobial pharmacodynamic concepts into clinical practice: a focus on β-lactam antibiotics. Pharmacotherapy. 2006;26:1320–32.CrossRefGoogle Scholar
  8. 8.
    Tsai D, Lipman J, Roberts JA. Pharmacokinetic/pharmacodynamics considerations for the optimization of antimicrobial delivery in the critically ill. Curr Opin Crit Care. 2015;21:412–20.CrossRefGoogle Scholar
  9. 9.
    Pea F, Viale P, Furlanut M. Antimicrobial therapy in critically ill patients. Clin Pharmacokinet. 2005;44:1009–34.CrossRefGoogle Scholar
  10. 10.
    Taccone FS, Laterre PF, Dugernier T, et al. Insufficient β-lactam concentrations in the early phase of severe sepsis and septic shock. Crit Care. 2010;14:R126.CrossRefGoogle Scholar
  11. 11.
    Udy AA, Roberts JA, Boots RJ, et al. Augmented renal clearance: implications for antibacterial dosing in the critically ill. Clin Pharm. 2010;49:1–16.CrossRefGoogle Scholar
  12. 12.
    Hobbs ALV, Shea KM, Roberts KM, et al. Implications of augmented renal clearance on drug dosing in critically ill patients: a focus on antibiotics. Pharmacotherapy. 2015;35:1063–75.CrossRefGoogle Scholar
  13. 13.
    Udy AA, Varghese JM, Altukroni M, et al. Subtherapeutic initial β-lactam concentrations in select critically ill: association between ARC and low trough drug concentrations. Chest. 2012;142:30–9.CrossRefGoogle Scholar
  14. 14.
    Oki FY. Principles of critical care. 3rd ed. New York: The McGraw-Hill Companies; 2005. p. 641–97.Google Scholar
  15. 15.
    Thomas Z, Bandali F, Sankaranarayanan J, et al. A multicenter evaluation of prolonged empiric antibiotic therapy in adult ICUs in the United States. Crit Care Med. 2015;43:2527–34.CrossRefGoogle Scholar
  16. 16.
    Doi Y, Chambers HF. Penicillin and beta-lactamase inhibitors. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 263–77.Google Scholar
  17. 17.
    Cosgrove SE, Avdic E, Dzintars K, et al. Johns Hopkins Antibiotic Guideline 2015–2016. Available at: https://www.hopkinsmedicine.org/amp/guidelines/antibiotic_guidelines.pdf. (2015). Accessed 10 Jan 2017.
  18. 18.
    Munoz-Price LS, Weinstein RA. Acinetobacter infection. N Engl J Med. 2008;358:1271–81.CrossRefGoogle Scholar
  19. 19.
    Solomkin JS, Mazuski JE, Bradley JS, et al. Diagnosis and management of complicated intra-abdominal infections in adults and children. Clin Infect Dis. 2010;50:133–64.CrossRefGoogle Scholar
  20. 20.
    Bieluch VM, Cuchural GJ, Snydman DR, et al. Clinical importance of cefoxitin-resistant Bacteroides fragilis isolates. Diagn Microbial Infect Dis. 1987;7:119–26.CrossRefGoogle Scholar
  21. 21.
    Craig WA, Andes DR. Cephalosporins. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 278–92.Google Scholar
  22. 22.
    Doi Y, Chambers HF. Other β-lactams. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 293–7.Google Scholar
  23. 23.
    Bhalodi AA, Nicolau. Principles of critical care. 4th ed. New York: The McGraw-Hill Companies; 2015. Available at: http://accessmedicine.mhmedical.com.ezproxy.lib.utexas.edu/content.aspx?bookid=1340&Sectionid=80033680. Accessed 12 Jan 2017.Google Scholar
  24. 24.
    Collins VL, Marchaim D, Pogue JM, et al. Efficacy of ertapenem for treatment of bloodstream infections caused by extended spectrum β-lactamase producing enterobacteriaceae. Antimicrob Agents Chemother. 2012;56:2173–7.CrossRefGoogle Scholar
  25. 25.
    Kalil AC, Metersky ML, Klompas M, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia. Clin Infect Dis. 2016;63:1–51.CrossRefGoogle Scholar
  26. 26.
    Jacoby GA, Munoz-Price LS. The new β-lactamases. N Engl J Med. 2005;352:380–91.CrossRefGoogle Scholar
  27. 27.
    Barlam TF, Cosgrove SE, Abbo LM, et al. Implementing an antibiotic stewardship program: guidelines by the IDSA and SHEA. Clin Infect Dis. 2016;62:51–77.CrossRefGoogle Scholar
  28. 28.
    Kuruvilla ME, Khan DA. Antibiotic allergy. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 298–303.Google Scholar
  29. 29.
    Salkind AR, Cuddy PG, Foxworth JW. The rational clinical examination; is this patient allergic to penicillin? JAMA. 2001;285:2498–505.CrossRefGoogle Scholar
  30. 30.
    Sullivan T, Wedner HJ, Shatz GS, et al. Skin testing to detect penicillin allergy. J Allergy Clin Immunol. 1981;68:171–80.CrossRefGoogle Scholar
  31. 31.
    Frumin J, Gallagher JC. Allergic cross-sensitivity between penicillin, carbapenem and monobactam antibiotics: what are the chances? Ann Pharmacother. 2009;43:304–15.CrossRefGoogle Scholar
  32. 32.
    Solensky R, Khan DA. Drug allergy: an updated practice parameter. Ann Allergy Asthma Immunol. 2010;105:e1–78.Google Scholar
  33. 33.
    Murray BE, Arias CA, Nannini EC. Glycopeptides (vancomycin and teicoplanin), streptogramins (Quinupristin-dalfopristin), lipopeptides (daptomycin), and lipoglycopeptides (telavancin). In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 377–400.Google Scholar
  34. 34.
    Alvarez R, Lopez Cortes LE, Molina J, et al. Optimizing the clinical use of vancomycin. Antimicrob Agents Chemother. 2016;60:2601–9.CrossRefGoogle Scholar
  35. 35.
    van Hal SJ, Lodise TP, Paterson DL. The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: a systemic review and meta-analysis. Clin Infect Dis. 2012;56:755–71.Google Scholar
  36. 36.
    Wunderink RG, Niederman MS, Kollef MH, et al. Linezolid in methicillin-resistance Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis. 2012;54:621–9.CrossRefGoogle Scholar
  37. 37.
    Stryjewski ME, Szczech LA, Benjamin DK, et al. Use of vancomycin or first-generation cephalosporins for the treatment of hemodialysis-dependent patients with methicillin-susceptible Staphylococcus aureus bacteremia. Clin Infect Dis. 2007;44:190–6.CrossRefGoogle Scholar
  38. 38.
    Schwizer ML, Furuno JP, Harris AD, et al. Comparable effectiveness of nafcillin of cefazolin versus vancomycin in methicillin-susceptible Staphylococcus aureus bacteremia. BMC Infect Dis. 2011;11:279–86.CrossRefGoogle Scholar
  39. 39.
    Rosini JM, Laughner J, Levine BJ, et al. A randomized trial of loading vancomycin in the emergency department. Ann Pharmacother. 2015;49:6–13.CrossRefGoogle Scholar
  40. 40.
    Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American society of health-system pharmacists, the infectious diseases society of America, and the society of infectious diseases pharmacists. Am J Health-Syst Pharm. 2009;66:82–98.CrossRefGoogle Scholar
  41. 41.
    Aubron C, Corallo CE, Nunn MO, et al. Evaluation of the accuracy of a pharmacokinetic dosing program in predicting serum vancomycin concentrations in critically ill patients. Ann Pharmacother. 2011;45:1193–8.CrossRefGoogle Scholar
  42. 42.
    Cohen SH, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol. 2010;31:431–55.CrossRefGoogle Scholar
  43. 43.
    Kullar R, Davis SL, Levine DP, et al. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus Aureus bacteremia: support for consensus guidelines suggested targets. Clin Infect Dis. 2011;52:975–81.CrossRefGoogle Scholar
  44. 44.
    van Hal SJ, Paterson DL, Lodise TP. Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother. 2013;57:734–44.CrossRefGoogle Scholar
  45. 45.
    Giuliano CA, Patel CR, Kale-Pradhan PB. Is the combination of piperacillin-tazobactam and vancomycin associated with development of acute kidney injury? A meta-analysis. Pharmacotherapy. 2016;36:1217–28.CrossRefGoogle Scholar
  46. 46.
    Lodise TP, Lomaestro B, Graves J, et al. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother. 2008;52:1330–6.CrossRefGoogle Scholar
  47. 47.
    Fraimow HS, Tsigrelis C. Antimicrobial resistance in the intensive care unit: mechanisms, epidemiology, and management of specific resistant pathogens. Crit Care Clin. 2011;27:163–205.CrossRefGoogle Scholar
  48. 48.
    Steenbergen JN, Alder J, Thorne GM, et al. Daptomycin: a lipopeptide antibiotic for the treatment of serious gram-positive infections. J Antimicrob Chemother. 2005;55:283–8.CrossRefGoogle Scholar
  49. 49.
    Kullar R, Davis SL, Levine DP, et al. High-dose daptomycin for treatment of complicated gram-positive infections: a large, multicenter, retrospective study. Pharmacotherapy. 2011;31:527–36.CrossRefGoogle Scholar
  50. 50.
    Britt NS, Potter EM, Patel N, et al. Comparative effectiveness and safety of standard-, medium-, and high-dose daptomycin strategies for the treatment of vancomycin-resistant Enterococcal bacteremia among veterans affairs patients. Clin Infect Dis. 2016;64(5):605–13. [Epub ahead of print].Google Scholar
  51. 51.
    Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the infectious diseases society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52:e18–55.CrossRefGoogle Scholar
  52. 52.
    Haselden M, Leach M, Bohm N. Daptomycin dosing strategies in patients receiving thrice-weekly intermittent dialysis. Ann Pharmacother. 2013;47:1342–7.CrossRefGoogle Scholar
  53. 53.
    Humphries RM, Pollett S, Sakoulas G. A current perspective on daptomycin for the clinical microbiologist. Clin Microbiol Rev. 2013;26:759–80.CrossRefGoogle Scholar
  54. 54.
    Mehta S, Singh C, Plata KB, et al. β-Lactams increase the antibacterial activity of daptomycin against clinical methicillin-resistant Staphylococcus aureus strains and prevent selection of daptomycin-resistant derivatives. Antimicrob Agents Chemother. 2012;56:192–200.Google Scholar
  55. 55.
    Cox HL, Donowitz GR. Linezolid and other oxazolidinones. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 406–9.Google Scholar
  56. 56.
    Zhanel GG, Love R, Adam H, et al. Tedizolid: a novel oxazolidinone with potent activity against multidrug-resistant gram-positive pathogens. Drugs. 2015;75:253–70.CrossRefGoogle Scholar
  57. 57.
    Ashtekar DR, Costa-Periera R, Shrinivasan T, et al. Oxazolidinones, a new class of synthetic antituberculosis agent. In vitro and in vivo activities of DuP-721 against Mycobacterium tuberculosis. Diagn Microbiol Infect Dis. 1991;14:465–71.CrossRefGoogle Scholar
  58. 58.
    Kullar R, Sakoulas G, Deresinski S, et al. When sepsis persists: a review of MRSA bacteraemia salvage therapy. J Antimicrob Chemother. 2016;7:576–86.CrossRefGoogle Scholar
  59. 59.
    Sperber SJ, Levine JF, Gross PA. Persistent MRSA bacteremia in a patient with low linezolid levels. Clin Infect Dis. 2003;36:675–6.CrossRefGoogle Scholar
  60. 60.
    Nambiar S, Rellosa N, Wassel RT, et al. Linezolid-associated peripheral and optic neuropathy in children. Pediatrics. 2011;127:1528–32.CrossRefGoogle Scholar
  61. 61.
    Gerson SL, Kaplan SL, Bruss JB, et al. Hematologic effects of linezolid: summary of clinical experience. Antimicrob Agents Chemother. 2002;46:2723–6.CrossRefGoogle Scholar
  62. 62.
    Sanchez-Garcia M, De la Torre MA, Morales G, et al. Clinical outbreak of linezolid-resistant Staphylococcus aureus in an intensive care unit. JAMA. 2010;303:2260–4.CrossRefGoogle Scholar
  63. 63.
    Corey GR, Kollef MH, Shorr AF, et al. Telavancin for hospital-acquired pneumonia: clinical response and 28-day survival. Antimicrob Agents Chemother. 2014;58:2030–7.CrossRefGoogle Scholar
  64. 64.
    Rubinstein E, Lalani T, Corey GR, et al. Telavancin versus vancomycin for hospital-acquired pneumonia due to gram-positive pathogens. Clin Infect Dis. 2011;52:31–40.CrossRefGoogle Scholar
  65. 65.
    Sivapalasingam S, Steigbigel NH. Macrolides, clindamycin, and ketolides. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 358–75.Google Scholar
  66. 66.
    Rams TE, Degener JE, van Winkelhoff AJ. Antibiotic resistance in human chronic periodontitis microbiota. J Periodontol. 2014;85:160–9.CrossRefGoogle Scholar
  67. 67.
    Plum AW, Mortelliti AJ, Walsh RE. Microbial flora and antibiotic resistance in peritonsillar abscesses in upstate New York. Ann Otol Rhinol Laryngol. 2015;124:875–80.CrossRefGoogle Scholar
  68. 68.
    Hooper DC, Strahilevitz J. Quinolones. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 419–39.Google Scholar
  69. 69.
    FDA Drug Safety Communication: FDA advises restricting fluoroquinolone antibiotic use for certain uncomplicated infections; wars about disabling side effects that can occur together. Available at: http://www.fda.gov/Drugs/DrugSafety/ucm500143.htm (2017). Accessed 10 Jan 2017.
  70. 70.
    Leggett JE. Aminoglycosides. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 310–21.Google Scholar
  71. 71.
    Nicolau DP, Freeman CD, Belliveau PP, et al. Experience with a once-daily aminoglycoside program administered to 2,184 adults patients. Antimicrob Agents Chemother. 1995;39:650–5.CrossRefGoogle Scholar
  72. 72.
    Zinner SH, Mayer KH. Sulfonamides and trimethoprim. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 410–8.Google Scholar
  73. 73.
    Nagel JL, Aronoff DM. Metronidazole. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 350–7.Google Scholar
  74. 74.
    Workowski KA, Bolan GA. Sexually transmitted diseases treatment guidelines 2015. MMWR. 2015;64:1–138.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Moffa M, Brook I. Tetracyclines, glycylcyclines, and chloramphenicol. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 322–38.Google Scholar
  76. 76.
    Kaye KS, Pogue JM, Kaye D. Polymyxins (Polymyxin B and colistin). In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 401–5.Google Scholar
  77. 77.
    Maslow MJ, Portal-Celhay C. Rifamycins. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 339–49.Google Scholar
  78. 78.
    Baddour LM, Wilson WR, Bayer AS, et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications. Circulation. 2015;132:1–52.CrossRefGoogle Scholar
  79. 79.
    Dive A, Miesse C, Galanti L, et al. Effect of erythromycin on gastric motility in mechanically ventilated critically ill patients a double-blinded, randomized, placebo-controlled study. Crit Care Med. 1995;23:1356–62.CrossRefGoogle Scholar
  80. 80.
    Bonacini M, Smith OJ, Pritchard T. Erythromycin as therapy for acute colonic pseudo-obstruction (Ogilvie’s syndrome). J Clin Gastroenterol. 1991;13:475.CrossRefGoogle Scholar
  81. 81.
    Restrepo MI, Mortensen EM, Waterer GW, et al. Impact of macrolide therapy on mortality for patients with severe sepsis due to pneumonia. Eur Respir J. 2009;33:153–9.CrossRefGoogle Scholar
  82. 82.
    Martin-Loeches I, Lisboa T, Rodriguez A, et al. Combination antibiotic therapy with macrolides improves survival in intubated patients with community-acquired pneumonia. Intensive Care Med. 2010;36:612–20.CrossRefGoogle Scholar
  83. 83.
    FDA Drug Safety Communication: azithromycin (Zithromax or Zmax) and the risk of potentially fatal heart rhythms. Available at: http://www.fda.gov/drugs/drugsafety/ucm341822.htm (2017). Accessed 10 Jan 2017
  84. 84.
    Ray WA, Murray KT, Hall K, et al. Azithromycin and the risk of cardiovascular death. N Engl J Med. 2012;366:1881–90.CrossRefGoogle Scholar
  85. 85.
    Rex JH, Stevens DA. Drugs active against fungi, Pneumocystis, and Microsporida. In: Bennett JE, editor. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Saunders; 2015. p. 479–94.Google Scholar
  86. 86.
    Nett JE, Andes DR. Antifungal agents spectrum of activity, pharmacology, and clinical indications. Infect Dis Clin N Am. 2016;30:51–83.CrossRefGoogle Scholar
  87. 87.
    Felton T, Troke PF, Hope WM. Tissue penetration of antifungal agents. Clin Microbiol Rev. 2014;27:66–88.CrossRefGoogle Scholar
  88. 88.
    Falci DR, dos Santos RP, Wirth F, et al. Continuous infusion of amphotericin B deoxycholate: an innovative, low-cost strategy in antifungal treatment. Mycoses. 2011;54:91–8.CrossRefGoogle Scholar
  89. 89.
    Beyda ND, Lewis RE, Garey KW. Echinocandin resistance in Candida species: mechanisms of reduced susceptibility and therapeutic approaches. Ann Pharmacother. 2012;46:1086–96.CrossRefGoogle Scholar
  90. 90.
    Dodds-Ashley E. Management of drug and food interactions with azole antifungal agents in transplant recipients. Pharmacotherapy. 2010;30:842–54.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mitchell J. Daley
    • 1
  • Emily K. Hodge
    • 1
  • Dusten T. Rose
    • 1
  1. 1.Department of PharmacyDell Seton Medical Center at the University of TexasAustinUSA

Personalised recommendations