Assessment and Management of Acute Respiratory Distress in the ICU

Chapter

Abstract

Acute respiratory distress is a common reason for ICU admission and is associated with significant morbidity and mortality. Delayed treatment can be catastrophic, whereas prompt and appropriate intervention can positively impact outcome. In this chapter we discuss the pathophysiology of respiratory distress clinicians may encounter in the ICU and management strategies for acute respiratory distress. Even with optimal management, many patients will experience profound morbidity and require prolonged intensive medical support. Long-term considerations must be consistent with the patient’s goals of care.

Keywords

Respiratory failure Mechanical ventilation Hypoxia Respiratory distress Acute respiratory distress syndrome 

References

  1. 1.
    Esteban A, Anzueto A, Frutos F, et al. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA. 2002;287:345–55.CrossRefGoogle Scholar
  2. 2.
    Wunsch H, Linde-Zwirble WT, Angus DC, et al. The epidemiology of mechanical ventilation use in the United States. Crit Care Med. 2010;38:1947–53.CrossRefGoogle Scholar
  3. 3.
    Unroe M, Kahn JM, Carson SS, Govert JA, Martinu T, Sathy SJ, et al. One-year trajectories of care and resource utilization for recipients of prolonged mechanical ventilation: a cohort study. Ann Intern Med. 2010;153(3):167–75.CrossRefGoogle Scholar
  4. 4.
    Cooke CR. Economics of mechanical ventilation and respiratory failure. Crit Care Clin. 2012;28(1):39–55.CrossRefGoogle Scholar
  5. 5.
    Barnato AE, Albert SM, Angus DC, Lave JR, Degenholtz HB. Disability among elderly survivors of mechanical ventilation. Am J Respir Crit Care Med. 2011;183(8):1037–42.CrossRefGoogle Scholar
  6. 6.
    Cox CE, Carson SS, Lindquist JH, Olsen MK, Govert JA, Chelluri L, Quality of Life After Mechanical Ventilation in the Aged (QOL-MV) Investigators. Differences in one-year health outcomes and resource utilization by definition of prolonged mechanical ventilation: a prospective cohort study. Crit Care. 2007;11(1):R9.CrossRefGoogle Scholar
  7. 7.
    Barjaktarevic I, Wang T. Acute respiratory failure. In: Textbook of critical care, vol. 9. Philadelphia: Elsevier; 2017. p. 33–7.Google Scholar
  8. 8.
    ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–33.Google Scholar
  9. 9.
    Bhargava M, Wendt CH. Biomarkers in acute lung injury. Transl Res. 2012;159(4):205–17.CrossRefGoogle Scholar
  10. 10.
    Álvarez P, Carrasco R, Romero-Dapueto C, Castillo RL. Transfusion-related acute lung injured (TRALI): current concepts. Open Respir Med J. 2015;9:92–6.CrossRefGoogle Scholar
  11. 11.
    Peters AL, Vlaar AP. Redefining transfusion-related acute lung injury: don’t throw the baby out with the bathwater. Transfusion. 2016;56:2384–8.CrossRefGoogle Scholar
  12. 12.
    ATLS Subcommittee, American College of Surgeons’ Committee on Trauma, International ATLS working group. Advanced trauma life support ATLS student course manual. 9th ed. Chicago: American College of Surgeons; 2012.Google Scholar
  13. 13.
    Tillquist MN, Gabriel RA, Dutton RP, Urman RD. Incidence and risk factors for early postoperative reintubations. J Clin Anesth. 2016;31:80–9.CrossRefGoogle Scholar
  14. 14.
    Hendrikse KA, Gratama JW, Hove W, Rommes JH, Schultz MJ, Spronk PE. Low value of routine chest radiographs in a mixed medical-surgical ICU. Chest. 2007;132(3):823–8.CrossRefGoogle Scholar
  15. 15.
    Lakhal K, Serveaux-Delous M, Lefrant JY, Capdevila X, Jaber S, AzuRéa network for the RadioDay study group. Chest radiographs in 104 French ICUs: current prescription strategies and clinical value (the RadioDay study). Intensive Care Med. 2012;38(11):1787–99.CrossRefGoogle Scholar
  16. 16.
    Ganapathy A, Adhikari NK, Spiegelman J, Scales DC. Routine chest x-rays in intensive care units: a systematic review and meta-analysis. Crit Care. 2012;16(2):R68.CrossRefGoogle Scholar
  17. 17.
    Bhattacharya B, Fieber J, Schuster K, Davis K, Maung A. “Occult” rib fractures diagnosed on computed tomography scan only are still a risk factor for solid organ injury. J Emerg Trauma Shock. 2015;8(3):140–3.CrossRefGoogle Scholar
  18. 18.
    Claessens YE, Debray MP, Tubach F, Brun AL, Rammaert B, Hausfater P, et al. Early chest computed tomography scan to assist diagnosis and guide treatment decision for suspected community-acquired pneumonia. Am J Respir Crit Care Med. 2015;192(8):974–82.CrossRefGoogle Scholar
  19. 19.
    Ambroggio L, Sucharew H, Rattan MS, O’Hara SM, Babcock DS, Clohessy C, et al. Lung ultrasonography: a viable alternative to chest radiography in children with suspected pneumonia? J Pediatr. 2016;176:93–98.e7.CrossRefGoogle Scholar
  20. 20.
    Xia Y, Ying Y, Wang S, Li W, Shen H. Effectiveness of lung ultrasonography for diagnosis of pneumonia in adults: a systematic review and meta-analysis. J Thorac Dis. 2016;8(10):2822–31.CrossRefGoogle Scholar
  21. 21.
    Soubani AO. Noninvasive monitoring of oxygen and carbon dioxide. Am J Emerg Med. 2001;19(2):141–6.CrossRefGoogle Scholar
  22. 22.
    Gray AJ, Goodacre S, Newby DE, et al. 3CPO Study Investigators. A multicentre randomized controlled trial of the use of continuous positive airway pressure and non-invasive positive pressure ventilation in the early treatment of patients presenting to the emergency department with severe acute cardiogenic pulmonary oedema: the 3CPO trial. Health Technol Assess. 2009;13:1–106.Google Scholar
  23. 23.
    Nava S, Gregoretti C, Fanfulla F, et al. Noninvasive ventilation to prevent respiratory failure after extubation in high-risk patients. Crit Care Med. 2005;33:2465–70.CrossRefGoogle Scholar
  24. 24.
    Jones PG, Kamona S, Doran O, Sawtell F, Wilsher M. Randomized controlled trial of humidified high-flow nasal oxygen for acute respiratory distress in the emergency department: the HOT-ER study. Respir Care. 2016;61(3):291–9.CrossRefGoogle Scholar
  25. 25.
    Frat JP, Thille AW, Mercat A, Girault C, Ragot S, Perbet S, et al.; FLORALI Study Group.; REVA Network. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372(23):2185–96.Google Scholar
  26. 26.
    Hernández G, Vaquero C, Colinas L, Cuena R, González P, Canabal A, et al. Effect of postextubation high-flow nasal cannula vs noninvasive ventilation on reintubation and postextubation respiratory failure in high-risk patients: a randomized clinical trial. JAMA. 2016;316(15):1565–74.CrossRefGoogle Scholar
  27. 27.
    Inaba K, Lustenberger T, Recinos G, Georgiou C, Velmahos GC, Brown C, et al. Does size matter? A prospective analysis of 28-32 versus 36-40 French chest tube size in trauma. J Trauma Acute Care Surg. 2012;72(2):422–7.CrossRefGoogle Scholar
  28. 28.
    Filosso PL, Sandri A, Guerrera F, Ferraris A, Marchisio F, Bora G, et al. When size matters: changing opinion in the management of pleural space-the rise of small-bore pleural catheters. J Thorac Dis. 2016;8(7):E503–10.CrossRefGoogle Scholar
  29. 29.
    Battle CE, Evans PA. Predictors of mortality in patients with flail chest: a systematic review. Emerg Med J. 2015;32(12):961–5.CrossRefGoogle Scholar
  30. 30.
    Shulzhenko NO, Zens TJ, Beems MV, Jung HS, O’Rourke AP, Liepert AE, et al. Number of rib fractures thresholds independently predict worse outcomes in older patients with blunt trauma. Surgery. 2016; pii: S0039–6060(16)30699–7.Google Scholar
  31. 31.
    Brasel KJ, Moore EE, Albrecht RA, deMoya M, Schreiber M, Karmy-Jones R, et al. Western trauma association critical decisions in trauma: management of rib fractures. J Trauma Acute Care Surg. 2017;82(1):200–3.CrossRefGoogle Scholar
  32. 32.
    Hekiert AM, Mick R, Mirza N. Prediction of difficult laryngoscopy: does obesity play a role? Ann Otol Rhinol Laryngol. 2007;116(11):799–804.CrossRefGoogle Scholar
  33. 33.
    Nuckton TJ, Glidden DV, Browner WS, Claman DM. Physical examination: Mallampati score as an independent predictor of obstructive sleep apnea. Sleep. 2006;29(7):903–8.CrossRefGoogle Scholar
  34. 34.
    Sulser S, Ubmann D, Schlaepfer M, Brueesch M, Goliasch G, Seifert B, et al. C-MAC videolaryngoscope compared with direct laryngoscopy for rapid sequence intubation in an emergency department: a randomised clinical trial. Eur J Anaesthesiol. 2016;33(12):943–8.CrossRefGoogle Scholar
  35. 35.
    Lewis SR, Butler AR, Parker J, Cook TM, Smith AF. Videolaryngoscopy versus direct laryngoscopy for adult patients requiring tracheal intubation. Cochrane Database Syst Rev. 2016;11:CD011136.PubMedGoogle Scholar
  36. 36.
    Algie CM, Mahar RK, Tan HB, Wilson G, Mahar PD, Wasiak J. Effectiveness and risks of cricoid pressure during rapid sequence induction for endotracheal intubation. Cochrane Database Syst Rev. 2015;11:CD011656.Google Scholar
  37. 37.
    Bone RC, Eubanks DH. The basis and basics of mechanical ventilation. Dis Mon. 1991;37(6):321–406.CrossRefGoogle Scholar
  38. 38.
    Demling RH, Knox JB. Basic concepts of lung function and dysfunction: oxygenation, ventilation, and mechanics. New Horiz. 1993;1(3):362–70.PubMedGoogle Scholar
  39. 39.
    Versprille A. Basic mechanisms and clinical consequences of cyclic changes in pulmonary blood flow and blood volume during mechanical ventilation. Eur J Anaesthesiol. 1994;11(1):15–23.PubMedGoogle Scholar
  40. 40.
    Davis WB, Rennard SI, Bitterman PB, Crystal RG. Pulmonary oxygen toxicity: early reversible changes in human alveolar structures induced by hyperoxia. N Engl J Med. 1983;309(15):878–83.CrossRefGoogle Scholar
  41. 41.
    Crapo JD. Morphologic changes in pulmonary oxygen toxicity. Annu Rev Physiol. 1986;48:721–31.CrossRefGoogle Scholar
  42. 42.
    Reinhart K, Bloos F, König F, Bredle D, Hannemann L. Reversible decrease of oxygen consumption by hyperoxia. Chest. 1991;99(3):690–4.CrossRefGoogle Scholar
  43. 43.
    Brueckl C, Kaestle S, Kerem A, et al. Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ. Am J Respir Cell Mol Biol. 2006;34(4):453–63.CrossRefGoogle Scholar
  44. 44.
    Girardis M, Busani S, Damiani E, Donati A, Rinaldi L, Marudi A, et al. Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the oxygen-ICU randomized clinical trial. JAMA. 2016;316(15):1583–9.CrossRefGoogle Scholar
  45. 45.
    Sloane PJ, Gee MH, Gottlieb JE, et al. A multicenter registry of patients with acute respiratory distress syndrome: physiology and outcome. Am Rev Respir Dis. 1992;146:419–26.CrossRefGoogle Scholar
  46. 46.
    Doyle RL, Szaflarski N, Modin GW, Wiener-Kronish JP, Matthay MA. Identification of patients with acute lung injury: predictors of mortality. Am J Respir Crit Care Med. 1995;152:1818–24.CrossRefGoogle Scholar
  47. 47.
    Zilberberg MD, Epstein SK. Acute lung injury in the medical ICU: comorbid conditions, age, etiology, and hospital outcome. Am J Respir Crit Care Med. 1998;157:1159–64.CrossRefGoogle Scholar
  48. 48.
    The Acute Respiratory Distress Syndrome Network, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342(18):1301–8.CrossRefGoogle Scholar
  49. 49.
    Dreyfuss D, Saumon G, Hubmayr RD, editors. Ventilator-induced lung injury. New York: Taylor & Francis; 2006.Google Scholar
  50. 50.
    Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med. 2006;34:1311–8.CrossRefGoogle Scholar
  51. 51.
    Varpula T, et al. The effects of ventilatory mode on lung aeration assessed with computer tomography: a randomized controlled study. J Intensive Care Med. 2009;24:122–30.CrossRefGoogle Scholar
  52. 52.
    Frawley PM, Habashi NM. Airway pressure release ventilation: theory and practice. AACN Clin Issues. 2001;12:234–46.CrossRefGoogle Scholar
  53. 53.
    Kaplan LJ, Bailey H, Formosa V. Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome. Crit Care. 2001;5(4):221–6.CrossRefGoogle Scholar
  54. 54.
    Fan E, et al. Sedation and analgesia usage with airway pressure release and assist-control ventilation for acute lung injury. J Intensive Care Med. 2008;23:376–83.CrossRefGoogle Scholar
  55. 55.
    Walkey AJ, et al. Use of airway pressure release ventilation is associated with a reduced incidence of ventilator-associated pneumonia in patients with pulmonary contusion. J Trauma. 2011;70:E42–7.CrossRefGoogle Scholar
  56. 56.
    Maxwell RA, et al. A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma. 2010;69:501–11.CrossRefGoogle Scholar
  57. 57.
    Maung AA, Schuster KM, Kaplan LJ, Ditillo MF, Piper GL, Maerz LL, et al. Compared to conventional ventilation, airway pressure release ventilation may increase ventilator days in trauma patients. J Trauma Acute Care Surg. 2012;73(2):507–10.CrossRefGoogle Scholar
  58. 58.
    Stawicki SP, Goyal M, Sarani B. High-frequency oscillatory ventilation (HFOV) and airway pressure release ventilation (APRV): a practical guide. J Intensive Care Med. 2009;24(4):215–29.CrossRefGoogle Scholar
  59. 59.
    Sud S, Sud M, Friedrich JO, Wunsch H, Meade MO, Ferguson ND, et al. High-frequency oscillatory ventilation versus conventional ventilation for acute respiratory distress syndrome. Cochrane Database Syst Rev. 2016;4:CD004085.PubMedGoogle Scholar
  60. 60.
    Bhatt N, Osborn E. Extracorporeal gas exchange: the expanding role of extracorporeal support in respiratory failure. Clin Chest Med. 2016;37(4):765–80.CrossRefGoogle Scholar
  61. 61.
    Tramm R, Ilic D, Davies AR, Pellegrino VA, Romero L, Hodgson C. Extracorporeal membrane oxygenation for critically ill adults. Cochrane Database Syst Rev. 2015;1:CD010381.PubMedGoogle Scholar
  62. 62.
    Protti A, Chiumello D, Cressoni M, Carlesso E, Mietto C, Berto V, Lazzerini M, Quintel M, Gattinoni L. Relationship between gas exchange response to prone position and lung recruitability during acute respiratory failure. Intensive Care Med. 2009;35:1011–7.CrossRefGoogle Scholar
  63. 63.
    Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.CrossRefGoogle Scholar
  64. 64.
    Hu SL, He HL, Pan C, Liu AR, Liu SQ, Liu L, et al. The effect of prone positioning on mortality in patients with acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. Crit Care. 2014;18(3):R109.CrossRefGoogle Scholar
  65. 65.
    Anifantaki S, Prinianakis G, Vitsaksaki E, et al. Daily interruption of sedative infusions in an adult medical-surgical intensive care unit: randomized controlled trial. J Adv Nurs. 2009;65:1054–60.CrossRefGoogle Scholar
  66. 66.
    de Wit M, Gennings C, Jenvey WI, et al. Randomized trial comparing daily interruption of sedation and nursing-implemented sedation algorithm in medical intensive care unit patients. Crit Care. 2008;12:R70.CrossRefGoogle Scholar
  67. 67.
    Mehta S, Burry L, Martinez-Motta JC, Stewart TE, Hallett D, McDonald E, et al. A randomized trial of daily awakening in critically ill patients managed with a sedation protocol: a pilot trial. Crit Care Med. 2008;36(7):2092–9.CrossRefGoogle Scholar
  68. 68.
    Juern JS. Removing the critically ill patient from mechanical ventilation. Surg Clin North Am. 2012;92(6):1475–83.CrossRefGoogle Scholar
  69. 69.
    Kollef MH, Shapiro SD, Silver P, St John RE, Prentice D, Sauer S, et al. A randomized, controlled trial of protocol-directed versus physician-directed weaning from mechanical ventilation. Crit Care Med. 1997;25(4):567–74.CrossRefGoogle Scholar
  70. 70.
    Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med. 1991;324(21):1445–50.CrossRefGoogle Scholar
  71. 71.
    Singh PM, Rewari V, Chandralekha, Arora MK, Trikha A. A retrospective analysis of determinants of self-extubation in a tertiary care intensive care unit. J Emerg Trauma Shock. 2013;6(4):241–5.CrossRefGoogle Scholar
  72. 72.
    Whelan J, Simpson SQ, Levy H. Unplanned extubation. Predictors of successful termination of mechanical ventilatory support. Chest. 1994;105(6):1808–12.CrossRefGoogle Scholar
  73. 73.
    Moons P, Sels K, De Becker W, De Geest S, Ferdinande P. Development of a risk assessment tool for deliberate self-extubation in intensive care patients. Intensive Care Med. 2004;30(7):1348–55.CrossRefGoogle Scholar
  74. 74.
    Burns KE, Meade MO, Premji A, Adhikari NK. Noninvasive positive-pressure ventilation as a weaning strategy for intubated adults with respiratory failure. Cochrane Database Syst Rev. 2013;12:CD004127.Google Scholar
  75. 75.
    Ferrer M, Valencia M, Nicolas JM, Bernadich O, Badia JR, Torres A. Early noninvasive ventilation averts extubation failure in patients at risk: a randomized trial. Am J Respir Crit Care Med. 2006;173(2):164–70.CrossRefGoogle Scholar
  76. 76.
    Keenan JE, Gulack BC, Nussbaum DP, Green CL, Vaslef SN, Shapiro ML, et al. Optimal timing of tracheostomy after trauma without associated head injury. J Surg Res. 2015;198(2):475–81.CrossRefGoogle Scholar
  77. 77.
    McCredie VA, Alali AS, Scales DC, Adhikari NK, Rubenfeld GD, Cuthbertson BH, et al. Effect of early versus late tracheostomy or prolonged intubation in critically ill patients with acute brain injury: a systematic review and meta-analysis. Neurocrit Care. 2017;26(1):14–25.CrossRefGoogle Scholar
  78. 78.
    Hyde GA, Savage SA, Zarzaur BL, Hart-Hyde JE, Schaefer CB, Croce MA, et al. Early tracheostomy in trauma patients saves time and money. Injury. 2015;46(1):110–4.CrossRefGoogle Scholar
  79. 79.
    Mehta AB, Cooke CR, Wiener RS, Walkey AJ. Hospital variation in early tracheostomy in the United States: a population-based study. Crit Care Med. 2016;44(8):1506–14.CrossRefGoogle Scholar
  80. 80.
    Andriolo BN, Andriolo RB, Saconato H, Atallah ÁN, Valente O. Early versus late tracheostomy for critically ill patients. Cochrane Database Syst Rev. 2015;1:CD007271.PubMedGoogle Scholar
  81. 81.
    Dettmer MR, Damuth E, Zarbiv S, Mitchell JA, Bartock JL, Trzeciak S. Prognostic factors for long-term mortality in critically ill patients treated with prolonged mechanical ventilation: a systematic review. Crit Care Med. 2017;45(1):69–74.CrossRefGoogle Scholar
  82. 82.
    Koeppen B, Stanton BA. Oxygen and carbon dioxide transport. In: Berne & Levy physiology. London: Elsevier Mosby; 2010. p. 459–67.Google Scholar
  83. 83.
    Islam S, Selbong U, Taylor CJ, Ormiston IW. Does a patient’s Mallampati score predict outcome after maxillomandibular advancement for obstructive sleep apnoea? Br J Oral Maxillofac Surg. 2015;53(1):23–7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Section of General Surgery, Trauma and Surgical Critical Care, Department of SurgeryYale School of MedicineNew HavenUSA

Personalised recommendations