Advertisement

Norm Conflict Identification Using Deep Learning

  • João Paulo Aires
  • Felipe Meneguzzi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10643)

Abstract

Contracts represent agreements between two or more parties formally in the form of deontic statements or norms within their clauses. If not carefully designed, such conflicts may invalidate an entire contract, and thus human reviewers invest great effort to write conflict-free contracts that, for complex and long contracts, can be time consuming and error-prone. In this work, we develop an approach to automate the identification of potential conflicts between norms in contracts. We build a two-phase approach that uses traditional machine learning together with deep learning to extract and compare norms in order to identify conflicts between them. Using a manually annotated set of conflicts as train and test set, our approach obtains 85% accuracy, establishing a new state-of-the art.

Keywords

Norms Contracts Deep learning Natural language 

Notes

Acknowledgements

We gratefully thank Google Research Awards for Latin America for funding our project.

References

  1. 1.
    Axelrod, R.: An evolutionary approach to norms. Am. Polit. Sci. Rev. 80(4), 1095–1111 (1986)CrossRefGoogle Scholar
  2. 2.
    Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. J. Mach. Learn. Res. 7, 551–585 (2006)MathSciNetMATHGoogle Scholar
  3. 3.
    Cun, L., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  4. 4.
    Cun, L., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems, pp. 396–404. Morgan Kaufmann, Massachusetts (1990)Google Scholar
  5. 5.
    Curtotti, M., Mccreath, E.: Corpus based classification of text in Australian contracts. In: Proceedings of the Australasian Language Technology Association Workshop, Melbourne, Australia, pp. 18–26 (2010)Google Scholar
  6. 6.
    Curtotti, M., McCreath, E.C.: A corpus of Australian contract language: description, profiling and analysis. In: Proceedings of the 13th International Conference on Artificial Intelligence and Law, ICAIL 2011, pp. 199–208. ACM, New York, NY, USA (2011)Google Scholar
  7. 7.
    Fenech, S., Pace, G.J., Schneider, G.: Automatic conflict detection on contracts. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 200–214. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03466-4_13 CrossRefGoogle Scholar
  8. 8.
    Fenech, S., Pace, G.J., Schneider, G.: CLAN: a tool for contract analysis and conflict discovery. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 90–96. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04761-9_8 CrossRefGoogle Scholar
  9. 9.
    Gao, X., Singh, M.P.: Mining contracts for business events and temporal constraints in service engagements. IEEE Trans. Serv. Comput. 7(3), 427–439 (2013)CrossRefGoogle Scholar
  10. 10.
    Gao, X., Singh, M.P., Mehra, P.: Mining business contracts for service exceptions. IEEE Trans. Serv. Comput. 5(3), 333–344 (2012)CrossRefGoogle Scholar
  11. 11.
    Gillick, D., Brunk, C., Vinyals, O., Subramanya, A.: Multilingual language processing from bytes. arXiv preprint arXiv:1512.00103 (2015)
  12. 12.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). (In Preparation)Google Scholar
  13. 13.
    Harris, Z.S.: Distributional Structure, pp. 775–794. Springer, Dordrecht (1970)Google Scholar
  14. 14.
    Hearst, M.A., Dumais, S.T., Osman, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998)CrossRefGoogle Scholar
  15. 15.
    Jain, L.C., Medsker, L.R.: Recurrent Neural Networks: Design and Applications, 1st edn. CRC Press Inc, Boca Raton, FL, USA (1999)Google Scholar
  16. 16.
    Jones, A.J.I., Sergot, M.J.: Deontic logic in the representation of law: towards a methodology. Artif. Intell. Law 1(1), 45–64 (1992)CrossRefGoogle Scholar
  17. 17.
    Kim, Y.: Convolutional neural networks for sentence classification. In: Moschitti, A., Pang, B., Daelemans, W. (eds.) Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, 25–29 October 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pp. 1746–1751. ACL (2014)Google Scholar
  18. 18.
    Meneguzzi, F., Rodrigues, O., Oren, N., Vasconcelos, W.W., Luck, M.: BDI reasoning with normative considerations. Eng. Appl. Artif. Intell. 43, 127–146 (2015)CrossRefGoogle Scholar
  19. 19.
    Minsky, M., Papert, S.: Perceptrons. In: Anderson, J.A., Rosenfeld, E. (eds.) Neurocomputing: Foundations of Research, pp. 157–169. MIT Press, Cambridge (1988)Google Scholar
  20. 20.
    Prisacariu, C., Schneider, G.: A formal language for electronic contracts. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 174–189. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72952-5_11 CrossRefGoogle Scholar
  21. 21.
    Rosso, P., Correa, S., Buscaldi, D.: Passage retrieval in legal texts. J. Logic Algebraic Program. 80(3–5), 139–153 (2011)CrossRefMATHGoogle Scholar
  22. 22.
    Rousseau, D.M., McLean Parks, J.: The contracts of individuals and organizations, vol. 15. JAI Press Ltd. (1993)Google Scholar
  23. 23.
    Sadat-Akhavi, A.: Methods of Resolving Conflicts Between Treaties. Graduate Institute of International Studies (Series), V. 3, M. Nijhoff (2003)Google Scholar
  24. 24.
    da Silva Figueiredo, K., da Silva, V.T.: An algorithm to identify conflicts between norms and values. In: Balke, T., Dignum, F., van Riemsdijk, M.B., Chopra, A.K. (eds.) COIN 2013. LNCS (LNAI), vol. 8386, pp. 259–274. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07314-9_14 CrossRefGoogle Scholar
  25. 25.
    Vasconcelos, W.W., Kollingbaum, M.J., Norman, T.J.: Normative conflict resolution in multi-agent systems. Auton. Agents Multi-Agent Syst. 19(2), 124–152 (2009)CrossRefGoogle Scholar
  26. 26.
    Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, ICML 2008, pp. 1096–1103. ACM, New York, NY, USA (2008)Google Scholar
  27. 27.
    von Wright, G.H.: Deontic Logic, New Series, vol. 60. Oxford University Press on behalf of the Mind Association, Oxford (1951)Google Scholar
  28. 28.
    Zhang, X., Cun, L.: Text understanding from scratch. CoRR abs/1502.01710 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computer SciencePontifical Catholic University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations