Skip to main content

Competitive Belief Propagation to Efficiently Solve Complex Multi-agent Negotiations with Network Structure

  • Conference paper
  • First Online:
Autonomous Agents and Multiagent Systems (AAMAS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10643))

Included in the following conference series:

Abstract

This paper focuses on enabling the use of negotiation for complex system optimisation, whose main challenge nowadays is scalability. Although multi-agent automated negotiation has been studied for decades, it is still a challenge to handle in a scalable and efficient manner negotiation problems involving many issues with complex interdependencies. This is a clear obstacle for the use of automated negotiation in complex networks. This paper proposes a novel perspective on the negotiation process as a competitive belief propagation process, where the whole negotiation is modelled as a factor graph and distributed belief propagation techniques (BP) are used to yield a solution. We show that the model adequately suits both simple and complex negotiation settings in the literature, and we validate its efficiency and scalability in a challenging, network structured, channel negotiation setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An, B., Lesser, V., Sim, K.M.: Strategic agents for multi-resource negotiation. Auton. Agent. Multi-Agent Syst. 23(1), 114–153 (2011)

    Article  Google Scholar 

  2. Baarslag, T., Dirkzwager, A., Hindriks, K.V., Jonker, C.M.: The significance of bidding, accepting and opponent modeling in automated negotiation. In: Proceedings of the Twenty-First European Conference on Artificial Intelligence, pp. 27–32. IOS Press (2014)

    Google Scholar 

  3. De La Hoz, E., Gimenez-Guzman, J.M., Marsa-Maestre, I., Orden, D.: A realistic scenario for complex automated nonlinear negotiation: Wi-Fi channel assignment. In: Proceedings of the the Ninth International Workshop on Agent-based Complex Automated Negotiations (ACAN2016), Singapore (2016)

    Google Scholar 

  4. De La Hoz, E., Marsa-Maestre, I., Gimenez-Guzman, J.M., Orden, D., Klein, M.: Multi-agent nonlinear negotiation for Wi-Fi channel assignment. In: Proceedings of the 16th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2017, International Foundation for Autonomous Agents and Multiagent Systems, Sao Paulo, Brazil (2017)

    Google Scholar 

  5. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed Computing, PODC 1987, New York, NY, USA, pp. 1–12 (1987)

    Google Scholar 

  6. Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make issue trade-offs in automated negotiations. Artif. Intell. 142(2), 205–237 (2002)

    Article  MathSciNet  Google Scholar 

  7. Fatima, S., Kraus, S., Wooldridge, M.: Principles of Automated Negotiation. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  8. Fujita, K., Ito, T., Klein, M.: A secure and fair protocol that addresses weaknesses of the nash bargaining solution in nonlinear negotiation. Group Decis. Negot. 21(1), 29–47 (2012)

    Article  Google Scholar 

  9. Gamarnik, D., Shah, D., Wei, Y.: Belief propagation for min-cost network flow: convergence and correctness. Oper. Res. 60(2), 410–428 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grubshtein, A., Meisels, A.: A distributed cooperative approach for optimizing a family of network games. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (eds.) Intelligent Distributed Computing V: Proceedings of the 5th International Symposium on Intelligent Distributed Computing - IDC 2011, pp. 49–62. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24013-3_6

    Google Scholar 

  11. Hadfi, R., Ito, T.: Complex multi-issue negotiation using utility hyper-graphs. JACIII 19(4), 514–522 (2015)

    Article  Google Scholar 

  12. Hattori, H., Klein, M., Ito, T.: Using iterative narrowing to enable multi-party negotiations with multiple interdependent issues. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2007, pp. 247:1–247:3. ACM, New York (2007)

    Google Scholar 

  13. de la Hoz, E., Gimenez-Guzman, J.M., Marsa-Maestre, I., Orden, D.: Automated negotiation for resource assignment in wireless surveillance sensor networks. Sensors 15(11), 29547–29568 (2015)

    Article  Google Scholar 

  14. Kinney, R., Crucitti, P., Albert, R., Latora, V.: Modeling cascading failures in the North American power grid. Eur. Phys. J. B-Condens. Matter Complex Syst. 46(1), 101–107 (2005)

    Article  Google Scholar 

  15. Klein, M., Faratin, P., Sayama, H., Bar-Yam, Y.: Negotiating complex contracts. Group Decis. Negot. 12(2), 111–125 (2003)

    Article  MATH  Google Scholar 

  16. Lang, F., Fink, A.: Learning from the metaheuristics: protocols for automated negotiations. Group Decis. Negot. 24(2), 299–332 (2015)

    Article  Google Scholar 

  17. Lopez-Carmona, M.A., Marsa-Maestre, I., Ibañez, G., Carral, J.A., Velasco, J.R.: Improving trade-offs in automated bilateral negotiations for expressive and inexpressive scenarios. J. Intell. Fuzzy Syst. 21(3), 165–174 (2010)

    Google Scholar 

  18. Marsa-Maestre, I., Lopez-Carmona, M.A., Velasco, J.R., de la Hoz, E.: Effective bidding and deal identification for negotiations in highly nonlinear scenarios. In: Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems - Volume 2, AAMAS 2009, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, pp. 1057–1064 (2009)

    Google Scholar 

  19. Orden, D., Marsá-Maestre, I., Giménez-Guzmán, J.M., de la Hoz, E.: Spectrum graph coloring and applications to WiFi channel assignment. CoRR abs/1602.05038 (2016)

    Google Scholar 

  20. Osorio, C., Bierlaire, M.: Mitigating network congestion: analytical models, optimization methods and their applications. In: 90th Annual Meeting, No. EPFL-TALK-196049 (2011)

    Google Scholar 

  21. Pelikan, M., Sastry, K., Goldberg, D.E.: Multiobjective estimation of distribution algorithms. In: Pelikan, M., Sastry, K., CantúPaz, E. (eds.) Scalable Optimization via Probabilistic Modeling, pp. 223–248. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-34954-9_10

    Chapter  Google Scholar 

  22. Schaller, B.: New York City’s congestion pricing experience and implications for road pricing acceptance in the United States. Transp. Pol. 17(4), 266–273 (2010)

    Article  Google Scholar 

  23. Tuza, Z., Gutin, G., Plurnmer, M., Tucker, A., Burke, E., Werra, D., Kingston, J.: Colorings and related topics. Handbook of Graph Theory. Discrete Mathematics and Its Applications, pp. 340–483. CRC Press, Boca Raton (2003)

    Chapter  Google Scholar 

  24. Vytelingum, P., Ramchurn, S.D., Voice, T.D., Rogers, A., Jennings, N.R.: Trading agents for the smart electricity grid. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: Volume 1, International Foundation for Autonomous Agents and Multiagent Systems, pp. 897–904 (2010)

    Google Scholar 

  25. Zheng, L., Mengshoel, O.: Optimizing parallel belief propagation in junction treesusing regression. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, ACM, Chicago, Illinois, USA, pp. 757–765 (2013)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Ministry of Economy and Competitiveness grants TIN2016-80622-P, TIN2014-61627-EXP, MTM2014-54207 and TEC2013-45183-R, and by the University of Alcala through CCG2016/EXP-048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Marsa-Maestre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marsa-Maestre, I., Gimenez-Guzman, J.M., de la Hoz, E., Orden, D. (2017). Competitive Belief Propagation to Efficiently Solve Complex Multi-agent Negotiations with Network Structure. In: Sukthankar, G., Rodriguez-Aguilar, J. (eds) Autonomous Agents and Multiagent Systems. AAMAS 2017. Lecture Notes in Computer Science(), vol 10643. Springer, Cham. https://doi.org/10.1007/978-3-319-71679-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71679-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71678-7

  • Online ISBN: 978-3-319-71679-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics