Skip to main content

Fabrication and Characterization of Mechanically Durable Superhydrophobic Surfaces

  • Chapter
  • First Online:
Biomimetics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 279))

  • 1865 Accesses

Abstract

Superhydrophobic surfaces with low contact angle hysteresis can be used for water-repellency, self-cleaning /low adhesion , drag reduction in fluid flow , energy conservation, and energy conversion .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balu, B., Breedveld, V., and Hess, D. W. (2008), “Fabrication of Roll-off and Sticky Superhydrophobic Cellulose Surfaces via Plasma Processing,” Langmuir 24, 4785–4790.

    Article  CAS  Google Scholar 

  • Bhushan, B. (2009), “Biomimetics: Lessons from Nature – an Overview,” Phil. Trans. R. Soc. A 367, 1445–1486.

    Google Scholar 

  • Bhushan, B. (2013a), Principles and Applications of Tribology, second ed., Wiley, New York.

    Google Scholar 

  • Bhushan, B. (2013b), Introduction to Tribology, second ed., Wiley, New York.

    Book  Google Scholar 

  • Bhushan, B. (2017a), Springer Handbook of Nanotechnology, fourth ed., Springer International, Cham, Switzerland.

    Google Scholar 

  • Bhushan B. (2017b), Nanotribology and Nanomechanics – An Introduction, fourth ed., Springer International, Cham, Switzerland.

    Google Scholar 

  • Bhushan, B. and Gupta, B. K. (1991), Handbook of Tribology: Materials, Coatings, and Surface Treatments, McGraw-Hill, New York.

    Google Scholar 

  • Bhushan, B. and Jung, Y. C. (2011), “Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction,” Prog. Mater. Sci. 56, 1–108.

    Article  CAS  Google Scholar 

  • Bhushan, B., Jung, Y. C., and Koch, K. (2009), “Micro-, Nano- and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and Low Adhesion,” Phil. Trans. R. Soc. A 367, 1631–1672.

    Article  CAS  Google Scholar 

  • Bjørnsen, G., Henriksen, L., Ulvensøen, J. H., and Roots, J. (2010), “Plasma Etching of Different Polydimethylsiloxane Elastomers, Effects from Process Parameters and Elastomer Composition,” Microelectron. Eng. 87, 67–71.

    Article  Google Scholar 

  • Bodas, D. and Khan-Malek, C. (2007), “Hydrophilization and Hydrophobic Recovery of PDMS by Oxygen Plasma and Chemical Treatment – An SEM Investigation,” Sensors and Actuators B 123, 368–373.

    Article  CAS  Google Scholar 

  • Burton, Z. and Bhushan, B. (2006), “Surface Characterization and Adhesion and Friction Properties of Hydrophobic Leaf Surfaces,” Ultramicroscopy 106, 709–719.

    Article  CAS  Google Scholar 

  • Callister, W. D. (2000), Materials Science and Engineering – An Introduction, fifth ed., Wiley, New York.

    Google Scholar 

  • Chang, C. M. (1994), Surface Modification and Characterization of Polymers, Hanser Publishers, New York, N.Y.

    Google Scholar 

  • Chen, X. H., Chen, C. S., Xiao, H. N., Liu, H. B., Zhou, L. P., Li, S. L., and Zhang, G. (2006), “Dry Friction and Wear Characteristics of Nickel/Carbon Nanotube Electroless Composite Deposits,” Tribol. Int. 39, 22–28.

    Article  CAS  Google Scholar 

  • Cheng, S. and Wu, Z. (2010), “Microfluidic Stretchable RF Electronics,” Lab Chip 10, 3227–3234.

    Article  CAS  Google Scholar 

  • Cho, Y.-S., Yi, G.-R., Hong, J.-J., Jang, S. H., and Yang, S.-M. (2006), “Colloidal Indium Tin Oxide Nanoparticles for Transparent and Conductive Films,” Thin Solid Films 515, 1864–1871.

    Article  CAS  Google Scholar 

  • Dresselhaus, M. S., Dresselhaus, G., and Avouris, Ph., eds. (2000), Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer, Heidelberg, Germany.

    Google Scholar 

  • Ebert, D. and Bhushan, B. (2012a), “Durable Lotus-Effect Surfaces with Hierarchical Structure Using Micro- and Nanosized Hydrophobic Silica Particles,” J. Colloid Interface Sci. 368, 584–591.

    Article  CAS  Google Scholar 

  • Ebert, D. and Bhushan, B. (2012b), “Transparent, Superhydrophobic, and Wear-Resistant Coatings on Glass and Polymer Substrates Using SiO2, ZnO, and ITO Nanoparticles,” Langmuir 28, 11391–11399.

    Article  CAS  Google Scholar 

  • Ebert, D. and Bhushan, B. (2016), “Transparent, Superhydrophobic and Wear-resistant Surfaces Using Deep Reactive Ion Etching on PDMS Substrates,” J. Colloid Interface Sci. 481, 82–90.

    Article  CAS  Google Scholar 

  • Ederth, J., Heszler, P., Hultåker, A., Niklasson, G. A., and Granqvist, C. G., (2003), “Indium Tin Oxide Films Made from Nanoparticles: Models for the Optical and Electrical Properties,” Thin Solid Films 445, 199–206.

    Article  CAS  Google Scholar 

  • Englert, B. C., Xiu, Y., and Wong, C. P. (2006), “Deposition and Surface Treatment of Microparticles to Produce Lotus-Effect Surface,” 11th International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, March 15–17, Atlanta, GA, 73–78.

    Google Scholar 

  • Garra, J., Long, T., Currie, J., Schneider, T., White, R., and Paranjape, M. (2002), “Dry Etching of Polydimethylsiloxane for Microfluidics Systems,” J. Vac. Sci. Technol. A 20, 975–982.

    Article  CAS  Google Scholar 

  • Gonzalez, M., Axisa, F., Bossuyt, F., Hsu, Y., Vandevelde, B., and Vanfleteren, J. (2009), “Design and Performance of Metal Conductors for Stretchable Electronic Circuits,” Circuit World 35, 22–30.

    Article  CAS  Google Scholar 

  • Hamberg, I. and Granqvist, C. G. (1984), “Band-gap Widening in Heavily Sn-doped In2O3,” Phys. Rev. B 30, 3240–3249.

    Google Scholar 

  • He, Z., Ma, M., Lan, X., Chen, F., Wang, K., Deng, H., Zhang, Q., and Fu, Q. (2011), “Fabrication of a Transparent Superamphiphobic Coating with Improved Stability,” Soft Matter 7, 6435–6443.

    Article  CAS  Google Scholar 

  • Hwang, S., Oh, D., Jung, P., Lee, S., Go, J., Kim, J., Hwang, K., and Ko, J. (2009), “Dry Etching of Polydimethylsiloxane using Microwave Plasma,” J. Micromech. Microeng. 19, 095010.

    Article  Google Scholar 

  • Johnston, I. D., McCluskey, D. K., Tan, C. K. L., and Tracey, M. C. (2014), “Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering,” J. Micromech. Microeng. 24, 035017.

    Article  Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2009), “Mechanically Durable CNT-Composite Hierarchical Structures with Superhydrophobicity, Self-Cleaning, and Low-Drag,” ACS Nano 3, 4155–4163.

    Article  CAS  Google Scholar 

  • Karunakaran, R. G., Lu, C.-H., Zhang, Z., and Yang, S. (2011), “Highly Transparent Superhydrophobic Surfaces from the Coassembly of Nanoparticles (≤100 nm),” Langmuir 27, 4594–4602.

    Article  CAS  Google Scholar 

  • Kim, H., Gilmore, C. M., Pique, A., Horowitz, J. S., Mattoussi, H., Murata, H., Kafafi, Z. H., and Chrisey, D. B. (1999), “Electrical, Optical, and Structural Properties of Indium-Tin-Oxide Thin Films for Organic Light Emitting Devices,” J. Appl. Phys. 86, 6451–6461.

    Article  CAS  Google Scholar 

  • Kim, J., Chaudhury, M., and Owen, M. J. (2000), “Hydrophobic Recovery of Polydimethylsiloxane Elastomer Exposed to Partial Electrical Discharge,” J. Colloid Interface Sci. 226, 231–236.

    Article  CAS  Google Scholar 

  • Kim, M., Moon, B.-U., and Hidrovo, C. H. (2013), “Enhancement of the Thermo-mechanical Properties of PDMS Molds for the Hot Embossing of PMMA Microfluidic Devices,” J. Micromech. Microeng. 23, 095024.

    Article  Google Scholar 

  • Koch, K., Bhushan, B., Jung, Y. C., and Barthlott, W. (2009), “Fabrication of Artificial Lotus Leaves and Significance of Hierarchical Structure for Superhydrophobicity and Low Adhesion,” Soft Matter 5, 1386–1393.

    Article  CAS  Google Scholar 

  • Kucheyev, S. O., Bradby, J. E., Williams, J. S., and Jagadish, C. (2002), “Mechanical Deformation of Single-crystal ZnO,” J. Appl. Phys. 80, 956–958.

    Article  CAS  Google Scholar 

  • Ling, X. Y., Phang, I. Y., Vancso, G. J., Huskens, J., and Reinhoudt, D. N. (2009), “Stable and Transparent Superhydrophobic Nanoparticle Films,” Langmuir 25, 3260–3263.

    Article  CAS  Google Scholar 

  • Liu, Y., Chen, X., and Xin, J. H. (2006), “Super-Hydrophobic Surfaces from a Simple Coating Method: A Bionic Nanoengineering Approach,” Nanotechnology 17, 3259–3263.

    Article  CAS  Google Scholar 

  • Malitson, H. (1965), “Inter specimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. America 55, 1205–1209.

    Google Scholar 

  • Manca, M., Cortese, B., Viola, I., Aricò, A., Cingolani, R., and Gigli, G. (2008), “Influence of Chemistry and Topology Effects on Superhydrophobic CF4-Plasma-Treated Poly(dimethylsiloxane) (PDMS),” Langmuir 24, 1833–1843.

    Article  CAS  Google Scholar 

  • Manca, M., Cannavale, A., De Marco, L., Aricò, A. S., Cingolani, R., and Gigli, G. (2009), “Durable Superhydrophobic and Antireflective Surfaces by Trimethylsilanized Silica Nanoparticles-Based Sol-Gel Processing,” Langmuir 25, 6357–6362.

    Article  CAS  Google Scholar 

  • Martin, S. and Bhushan, B. (2017), “Transparent, Wear-resistant, Superhydrophobic and Superoleophobic Poly(dimethylsiloxane) (PDMS) Surfaces,” J. Colloid Interface Sci., 488, 118–126.

    Article  CAS  Google Scholar 

  • McClain, M., LaPlaca, M., and Allen, M. (2009), “Spun-cast Micromolding for Etchless Micropatterning of Electrically Functional PDMS Structures,” J. Micromech. Microeng. 19, 107002.

    Article  Google Scholar 

  • Meyyappan, M. (2005), Carbon Nanotubes – Science and Applications, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Ming, W., Wu, D., van Benthem, R., and de With, G. (2005), “Superhydrophobic Films from Raspberry-Like Particles,” Nano Lett. 5, 2298–2301.

    Article  CAS  Google Scholar 

  • Moustaghfir, A., Tomasella, E., Rivaton, A., Mailhot, B., Jacquet, M., Gardette, J. L., and Cellier, J. (2004), “Sputtered Zinc Oxide Coatings: Structural Study and Application to the Photoreception of the Polycarbonate,” Surf. Coatings Technol. 180181, 642–645.

    Google Scholar 

  • Nakajima, A., Fujishima, A., Hashimoto, K., and Watanabe, T. (1999), “Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate,” Adv. Mater. 11, 1365–1368.

    Article  CAS  Google Scholar 

  • Natsume, Y. and Sakata, H. (2000), “Zinc Oxide Films Prepared by Sol-gel Spin-coating,” Thin Solid Films 372, 30–36.

    Article  CAS  Google Scholar 

  • Nishimoto, S., Kubo, A., Nohara, K., Zhang, X., Taneichi, N., Okui, T., Liu, Z., Nakata, K., Sakai, H., Murakami, T., Abe, M., Komine, T., and Fujishima, A. (2009), “TiO2-based Superhydrophobic-Superhydrophilic Patterns: Fabrication via an Ink-jet Technique and Application in Offset Printing,” Appl. Surf. Sci. 255, 6221–6225.

    Article  CAS  Google Scholar 

  • Noh, J. H., Han, H. S., Lee, S., Kim, D. H., Park, J. H., Park, S., Kim, J. Y., Jung, H. S., and Hong, K. S. (2010), “A Newly Designed Nb-Doped TiO2/Al-Doped ZnO Transparent Conducting Oxide Multilayer for Electrochemical Photoenergy Conversion Devices,” J. Phys. Chem. C 114, 13867–13871.

    Article  CAS  Google Scholar 

  • Obeso, C. G., Sousa, M. P., Song, W., Rodriguez-Perez, M. A., Bhushan, B., and Mano, J. F. (2013), “Modification of Paper Using Polyhydroxybutyrate to Obtain Biomimetic Superhydrophobic Substrates,” Colloids Surf. A 416, 51–55.

    Article  Google Scholar 

  • Park, T.-Y., Choi, Y.-S., Kang, J.-W., Jeong, J.-H., Park, S.-J., Jeon, D. M., Kim, J. W., and Kim, Y. C. (2010), “Enhanced Optical Power and Low Forward Voltage of GaN-based Light-Emitting Diodes with Ga-doped ZnO Transparent Conducting Layer,” Appl. Phys. Lett. 96, 051124.

    Article  Google Scholar 

  • Schneider, P. M. and Fowler, W. B. (1976), “Band Structure and Optical Properties of Silicon Dioxide,” Phys. Rev. Lett. 36, 425–428.

    Article  CAS  Google Scholar 

  • Shackelford, J. F. and Alexander, W., eds. (2001), CRC Materials Science and Engineering Handbook, third ed., CRC Press, Boca Raton, FL.

    Google Scholar 

  • Srikant, V. and Clarke, D. (1998), “On the Optical Band Gap of Zinc Oxide,” J. Appl. Phys. 83, 5447–5451.

    Article  CAS  Google Scholar 

  • Tropmann, A., Tanguy, L., Koltay, P., Zengerle, R., and Riegger, L. (2012), “Completely Superhydrophobic PDMS Surfaces for Microfluidics,” Langmuir 28, 8292–8295.

    Article  CAS  Google Scholar 

  • Tserepi, A., Vlachopoulou, M., and Gogolides, E. (2006), “Nanotexturing of Poly(dimethylsiloxane) in Plasmas for Creating Robust Super-hydrophobic Surfaces,” Nanotechnology 17, 3977–3983.

    Article  CAS  Google Scholar 

  • Vila, M., Cáceres, D., and Prieto, C. (2003), “Mechanical Properties of Sputtered Silicon Nitride Thin Films,” J Appl. Phys. 94, 7868–7873.

    Article  CAS  Google Scholar 

  • Wong, E. W., Sheehan, P. E., and Lieber, C. M. (1997), “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science 277, 1971–1975.

    Article  CAS  Google Scholar 

  • Yang, H. and Deng, Y. (2008), “Preparation and Physical Properties of Superhydrophobic Papers,” J. Colloid Interface Sci., 325, 588–593.

    Article  CAS  Google Scholar 

  • Yang, Y., Sun, X. W., Chen, B. J., Xu, C. X., Chen, T. P., Sun, C. Q., Tay, B. K., and Sun, Z. (2006), “Refractive Indices of Textured Indium Tin Oxide and Zinc Oxide Thin Films,” Thin Solid Films 510, 95–101.

    Article  CAS  Google Scholar 

  • Zeng, K., Zhu, F., Hu, J., Shen, L., Zhang, K., and Gong, H. (2003), “Investigation of Mechanical Properties of Transparent Conducting Oxide Thin Films,” Thin Solid Films 443, 60–65.

    Article  CAS  Google Scholar 

  • Zhang, Y. Y., Wang, C. M., and Tan, V. B. C. (2008), “Examining the Effects of Wall Numbers on Buckling Behavior and Mechanical Properties of Multiwalled Carbon Nanotubes via Molecular Dynamics Simulations,” J. Appl. Phys. 103, 053505.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhushan, B. (2018). Fabrication and Characterization of Mechanically Durable Superhydrophobic Surfaces. In: Biomimetics. Springer Series in Materials Science, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-319-71676-3_7

Download citation

Publish with us

Policies and ethics