Skip to main content

Gecko Adhesion

  • Chapter
  • First Online:
Biomimetics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 279))

  • 2063 Accesses

Abstract

The leg attachment pads of several animals are capable of attaching to and detaching from a variety of surfaces and are used for locomotion , even on vertical walls or across the ceiling (Gorb 2001; Bhushan 2007). These include many insects , spiders, and lizards. Biological evolution has led to the optimization of their leg attachment systems. This dynamic attachment ability is referred to as reversible adhesion or smart adhesion (Bhushan et al. 2006). Many insects (e.g., beetles and flies) and spiders have been the subject of investigative interest. However, the attachment pads of geckos have been the most widely studied because they have the highest body mass and exhibit the most versatile and effective adhesive known in nature. Therefore, this chapter will be concerned primarily with gecko adhesion .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksak, B., Murphy, M. P., and Sitti, M. (2007), “Adhesion of Biologically Inspired Vertical and Angled Polymer Microfiber Arrays,” Langmuir 23, 3322–3332.

    Article  CAS  Google Scholar 

  • Aksak, B., Murphy, M. P., and Sitti, M. (2008), “Gecko Inspired Micro-Fibrillar Adhesives for Wall Climbing Robots on Micro/Nanoscale Rough Surfaces,” Proc. 2008 IEEE Conf. on Robotics and Automation, Pasadena, CA, pp. 3058–3063.

    Google Scholar 

  • Aristotle, Historia Animalium, trans. Thompson, D.A.W. (1918), <http://classics.mit.edu/Aristotle/history_anim.html>.

  • Arzt, E., Gorb, S. and Spolenak, R. (2003), “From Micro to Nano Contacts in Biological Attachment Devices,” Proc. Natl. Acad. Sci. USA 100, 10603–10606.

    Article  CAS  Google Scholar 

  • Autumn, K. (2006), “How Gecko Toes Stick,” Am. Scientist, 94, 124–132.

    Article  Google Scholar 

  • Autumn, K. and Peattie, A. M. (2002), “Mechanisms of Adhesion in Geckos,” Integr. Comp. Biol. 42, 1081–1090.

    Article  Google Scholar 

  • Autumn, K., Liang, Y. A., Hsieh, S. T., Zesch, W., Chan, W. P., Kenny, T. W., Fearing, R. and Full, R. J. (2000), “Adhesive Force of a Single Gecko Foot-Hair,” Nature, 405, 681–685.

    Article  CAS  Google Scholar 

  • Autumn, K., Sitti, M., Liang, Y. A., Peattie, A. M., Hansen, W. R., Sponberg, S., Kenny, T. W., Fearing, R., Israelachvili, J. N. and Full R. J. (2002), “Evidence for van der Waals Adhesion in Gecko Setae,” Proc. Natl. Acad. Sci. USA 99, 12252–12256.

    Article  CAS  Google Scholar 

  • Autumn, K., Majidi, C., Groff, R. E., Dittmore, A., and Fearing, R. (2006a), “Effective Elastic Modulus of Isolated Gecko Setal Arrays,” J. Exp. Biol. 209, 3558–3568.

    Article  CAS  Google Scholar 

  • Autumn, K., Dittmore, A., Santos, D., Spenko, M., and Cutkosky, M. (2006b), “Frictional Adhesion, a New Angle on Gecko Attachment,” J. Exp. Biol. 209, 3569–3579.

    Article  CAS  Google Scholar 

  • Barnes, W. J. P., Smith, J., Oines, C., and Mundl, R. (2002), “Bionics and Wet Grip,” Tire Technol. Int. 2002, 56–60.

    Google Scholar 

  • Bergmann, P. J. and Irschick, D. J. (2005), “Effects of Temperature on Maximum Clinging Ability in a Diurnal Gecko: Evidence for a Passive Clinging Mechanism?” J. Exp. Zool. 303A, 785–791.

    Article  Google Scholar 

  • Bertram, J. E. A. and Gosline, J. M. (1987), “Functional Design of Horse Hoof Keratin: The Modulation of Mechanical Properties through Hydration Effects,” J. Exp. Biol. 130, 121–136.

    Google Scholar 

  • Bhushan, B. (1996), Tribology and Mechanics of Magnetic Storage Devices, second ed., Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Bhushan, B. (2007), “Adhesion of Multi-Level Hierarchical Attachment Systems in Gecko Feet,” J. Adhesion Sci. Technol. 21, 1213–1258.

    Article  CAS  Google Scholar 

  • Bhushan, B. (2013a), Principles and Applications of Tribology, second ed., Wiley, New York.

    Google Scholar 

  • Bhushan, B. (2013b), Introduction to Tribology, second ed., Wiley, New York.

    Book  Google Scholar 

  • Bhushan, B. (2017a) Nanotribology and Nanomechanics: An Introduction, fourth ed., Springer International, Cham, Switzerland.

    Google Scholar 

  • Bhushan, B. (2017b), Springer Handbook of Nanotechnology, fourth ed., Springer International, Cham, Switzerland.

    Google Scholar 

  • Bhushan, B. and Jung, Y. C. (2011), “Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction,” Prog. Mater. Sci. 56, 1–108.

    Article  CAS  Google Scholar 

  • Bhushan, B. and Lee, H. (2012), “Fabrication and Characterization of Multi-level Hierarchical Surfaces,” Faraday Discuss. 156, 235–241.

    Article  CAS  Google Scholar 

  • Bhushan, B. and Sayer, R. A. (2007), “Surface Characterization and Friction of a Bio-Inspired Reversible Adhesive Tape,” Microsyst. Technol. 13, 71–78.

    Article  Google Scholar 

  • Bhushan, B., Peressadko, A. G., and Kim, T. W. (2006) “Adhesion Analysis of Two-Level Hierarchical Morphology in Natural Attachment Systems for ‘Smart Adhesion’,” J. Adhesion Sci. Technol. 20, 1475–1491.

    Article  CAS  Google Scholar 

  • Bikerman, J. J. (1961), The Science of Adhesive Joints, Academic Press, New York.

    Google Scholar 

  • Burton, Z. and Bhushan, B. (2005), “Hydrophobicity, Adhesion, and Friction Properties of Nanopatterned Polymers and Scale Dependence for Micro- and Nanoelectromechanical Systems,” Nano Letters 5, 1607–1613.

    Article  CAS  Google Scholar 

  • Cai, S. and Bhushan, B. (2007), “Effects of Symmetric and Asymmetric Contact Angles and Division of Menisci on Meniscus and Viscous Forces during Separation,” Philos. Mag. 87, 5505–5522.

    Google Scholar 

  • Cai, S. and Bhushan, B. (2008), “Meniscus and Viscous Forces During Separation of Hydrophilic and Hydrophobic Surfaces with Liquid Mediated Contacts,” Mater. Sci. Eng. R 61, 78–106.

    Article  Google Scholar 

  • Cho, W. K. and Choi, I. S. (2007), “Fabrication of Hairy Polymeric Films Inspired by Geckos: Wetting and High Adhesion Properties,” Adv. Func. Mater. 18, 1089–1096.

    Article  CAS  Google Scholar 

  • Chui, B. W., Kenny, T. W., Mamin, H. J., Terris, B. D. and Rugar, D. (1998), “Independent Detection of Vertical and Lateral Forces with a Sidewall-Implanted Dual-Axis Piezoresistive Cantilever,” Appl. Phys. Lett. 72, 1388–1390.

    Article  CAS  Google Scholar 

  • Cutkosky, M. R. and Kim, S. (2009), “Design and Fabrication of Multi-Materials Structures for Bio-Inspired Robots,” Phil. Trans. R. Soc. A 367, 1799–1813.

    Article  CAS  Google Scholar 

  • Daltorio, K. A., Gorb, S., Peressadko, A., Horchler, A. D., Ritzmann, R. E., and Quinn, R. D. (2007), “A Robot that Climbs Walls using Micro-Structured Polymer Adhesive,” Proc. 30th Annual Meeting of the Adhesion Society, pp. 329–331.

    Google Scholar 

  • Davies, J., Haq, S., Hawke, T., and Sargent, J. P. (2008), “A Practical Approach to the Development of a Synthetic Gecko Tape,” Int. J. Adhesion and Adhesives 29, 380–390.

    Article  CAS  Google Scholar 

  • del Campo, A. and Greiner, C. (2007), “SU-8: A Photoresist for High-Aspect-Ratio and 3D Submicron Lithography,” J. Micromech. Microeng. 17, R81–R95.

    Article  Google Scholar 

  • del Campo, A. Greiner, C., Alvares, I., and Arzt, E. (2007a), “Patterned Surfaces with Pillars with Controlled 3D Tip Geometry Mimicking Bioattachment Devices,” Adv. Mater. 19, 1973–1977.

    Article  Google Scholar 

  • del Campo, A., Greiner, C. and Arzt, E. (2007b), “Contact Shape Controls Adhesion of Bioinspired Fibrillar Surfaces,” Langmuir 23, 10235–10243.

    Article  CAS  Google Scholar 

  • Dellit, W. D. (1934), “Zur Anatomie und Physiologie der Geckozehe,” Jena. Z. Naturwissen, 68, 613–658.

    Google Scholar 

  • Derjaguin, B. V., Muller, V. M., and Toporov, Y. P. (1975), “Effect of Contact Deformation on the Adhesion of Particles,” J. Colloid Interface Sci. 53, 314–326.

    Article  CAS  Google Scholar 

  • Dieter G. E. (1988), Mechanical Metallurgy, McGraw Hill, London.

    Google Scholar 

  • Fan, P. L. and O’Brien, M. J. (1975), “Adhesion in Deformable Isolated Capillaries,” Adhesion Science and Technology, (ed. L. H. Lee), Vol. 9A, p. 635, Plenum, New York.

    Google Scholar 

  • Federle, W., (2006) “Why are So Many Adhesive Pads Hairy?” J. Exp. Biol. 209, 2611–2621.

    Article  Google Scholar 

  • Federle, W., Riehle, M., Curtis, A. S. G. and Full, R. J. (2002), “An Integrative Study of Insect Adhesion: Mechanics of Wet Adhesion of Pretarsal Pads in Ants,” Integr. Comp. Biol. 42, 1100–1106.

    Article  Google Scholar 

  • Federle, W., Barnes, W. J. P., Baumgartner, W., Drechsler, P., and Smith, J. M. (2006), “Wet but Not Slippery: Boundary Friction in Tree Frog Adhesive Toe Pads,” J. R. Soc. Interf. 3, 689–697.

    Article  CAS  Google Scholar 

  • Gao, H., Wang, X., Yao, H., Gorb, S. and Arzt, E. (2005), “Mechanics of Hierarchical Adhesion Structures of Geckos,” Mech. Mater. 37, 275–285.

    Article  Google Scholar 

  • Ge, L., Sethi, S., Ci, L., Ajayan, M. and Dhinojwale, A, (2007), “Carbon Nanotube-based Synthetic Gecko Tape,” PNAS 104, 10792–10795.

    Article  CAS  Google Scholar 

  • Geim, A. K., Dubonos, S. V., Grigorieva, I. V., Novoselov, K. S., Zhukov, A. A. and Shapoval, S. Y. (2003), “Microfabricated Adhesive Mimicking Gecko Foot-Hair,” Nat. Mater. 2, 461–463.

    Article  CAS  Google Scholar 

  • Gennaro, J. G. J. (1969), “The Gecko Grip,” Nat. Hist. 78, 36–43.

    Google Scholar 

  • Glassmaker, N. J., Jagota, A., Hui, C. Y. and Kim, J. (2004), “Design of Biomimetic Fibrillar Interfaces: 1. Making Contact,” J. R. Soc. Interface 1, 23–33.

    Article  CAS  Google Scholar 

  • Glassmaker, N. J., Jagota, A. and Hui, C. Y. (2005), “Adhesion Enhancement in a Biomimetic Fibrillar Interface,” Acta Biomaterialia 1, 367–375.

    Article  Google Scholar 

  • Gorb, S. (2001), Attachment Devices of Insect Cuticles, Kluwer Academic, Dordrecht, Netherlands.

    Google Scholar 

  • Gorb, S., Varenberg, M., Peressadko, A. and Tuma, J. (2007), “Biomimetic Mushroom-Shaped Fibrillar Adhesive Microstructures,” J. Royal Soc. Interf. 4, 271–275.

    Article  Google Scholar 

  • Hamaker, H. C. (1937), “London van der Waals Attraction between Spherical Bodies,” Physica, 4, 1058.

    Article  CAS  Google Scholar 

  • Han, D., Zhou, K., and Bauer, A. M. (2004), “Phylogenetic Relationships among Gekkotan Lizards Inferred from C-mos Nuclear DNA Sequences and a New Classification of the Gekkota,” Biol. J. Linn. Soc. 83, 353–368.

    Article  Google Scholar 

  • Hanna, G. and Barnes, W. J. P. (1991), “Adhesion and Detachment of the Toe Pads of Tree Frogs,” J. Exper. Biol. 155, 103–125.

    Google Scholar 

  • Hansen, W. R. and Autumn, K. (2005), “Evidence for Self-Cleaning in Gecko Setae,” Proc. Natl. Acad. Sci. USA 102, 385–389.

    Article  CAS  Google Scholar 

  • Heepe, L., Kovalev, A. E., Varenberg, M., Tuma, J., and Gorb, S. N. (2012), “First Mushroom-Shaped Adhesive Microstructure: A Review,” Theoretical Appl. Mech. Lett. 2, 014008.

    Article  Google Scholar 

  • Hiller, U. (1968), “Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien,” Z. Morphol. Tiere, 62, 307–362.

    Google Scholar 

  • Hinds, W. C. (1982), Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, Wiley, New York.

    Google Scholar 

  • Hora, S. L. (1923), “The Adhesive Apparatus on the Toes of Certain Geckos and Tree Frogs,” J. Asiat. Soc. Beng. 9, 137–145.

    Google Scholar 

  • Houwink, R. and Salomon, G. (1967), “Effect of Contamination on the Adhesion of Metallic Couples in Ultra High Vacuum,” J. Appl. Phys. 38, 1896–1904.

    Google Scholar 

  • Huber, G., Gorb, S. N., Spolenak, R. and Arzt, E. (2005a), “Resolving the Nanoscale Adhesion of Individual Gecko Spatulae by Atomic Force Microscopy,” Biol. Lett. 1, 2–4.

    Article  Google Scholar 

  • Huber, G., Mantz, H., Spolenak, R., Mecke, K., Jacobs, K., Gorb, S. N. and Arzt, E. (2005b), “Evidence for Capillarity Contributions to Gecko Adhesion from Single Spatula and Nanomechanical Measurements,” Proc. Natl. Acad. Sci. USA 102, 16293–16296.

    Article  CAS  Google Scholar 

  • Irschick, D. J., Austin, C. C., Petren, K., Fisher, R. N., Losos, J. B. and Ellers, O. (1996), “A Comparative Analysis of Clinging Ability Among Pad-Bearing Lizards,” Biol. J. Linn. Soc. 59, 21–35.

    Article  Google Scholar 

  • Israelachvili, J. N. (1992), Intermolecular and Surface Forces, second ed., Academic Press, San Diego, CA.

    Google Scholar 

  • Israelachvili, J. N. and Tabor, D. (1972), “The Measurement of van der Waals Dispersion Forces in the Range of 1.5 to 130 nm,” Proc. R. Soc. Lond. A. 331, 19–38.

    Google Scholar 

  • Jaenicke, R. (1998), “Atmospheric Aerosol Size Distribution,” Atmospheric Particles (eds. R. M. Harrison and R. van Grieken), pp. 1–29, Wiley, New York.

    Google Scholar 

  • Jagota, A. and Bennison, S. J. (2002), “Mechanics of Adhesion through a Fibrillar Microstructure,” Integr. Comp. Biol. 42, 1140–1145.

    Article  Google Scholar 

  • Johnson, K. L., Kendall, K. and Roberts, A. D. (1971), “Surface Energy and the Contact of Elastic Solids,” Proc. R. Soc. Lond. A. 324, 301–313.

    Article  CAS  Google Scholar 

  • Kesel, A. B., Martin, A. and Seidl, T. (2003), “Adhesion Measurements on the Attachment Devices of the Jumping Spider Evarcha arcuata,” J. Exp. Biol. 206, 2733–2738.

    Article  CAS  Google Scholar 

  • Kim, T. W. and Bhushan, B. (2007a), “The Adhesion Analysis of Multi-Level Hierarchical Attachment System Contacting with a Rough Surface,” J. Adhesion Sci. Technol. 21, 1–20.

    Article  CAS  Google Scholar 

  • Kim, T. W. and Bhushan, B. (2007b), “Effect of Stiffness of Multi-Level Hierarchical Attachment System on Adhesion Enhancement,” Ultramicroscopy 107, 902–912.

    Article  CAS  Google Scholar 

  • Kim, T. W. and Bhushan, B. (2007c), “Optimization of Biomimetic Attachment System Contacting with a Rough Surface,” J. Vac. Sci. Technol. A 25 1003–1012.

    Article  CAS  Google Scholar 

  • Kim, T. W. and Bhushan, B. (2008), “The Adhesion Model Considering Capillarity for Gecko Attachment System,” J. R. Soc. Interf. 5, 319–327.

    Article  Google Scholar 

  • Kluge, A. G. (2001), “Gekkotan Lizard Taxonomy,” Hamadryad 26, 1–209.

    Google Scholar 

  • Lee, H. and Bhushan, B. (2012), “Fabrication and Characterization of Hierarchical Nanostructured Smart Adhesion Surfaces,” J. Colloid Surf. Sci. 372, 231–238.

    Article  CAS  Google Scholar 

  • Losos, J. B. (1990), “Thermal Sensitivity of Sprinting and Clinging Performance in the Tokay Gecko (Gekko gecko),” Asiat. Herpetol. Res. 3, 54–59.

    Google Scholar 

  • Maderson, P. F. A. (1964), “Keratinized Epidermal Derivatives as an Aid to Climbing in Gekkonid Lizards,” Nature 2003, 780–781.

    Article  Google Scholar 

  • Murphy, M. P., Aksak, B. and Sitti, M. (2007), “Adhesion and Anisotropic Friction Enhancement of Angled Heterogeneous Micro-fiber Arrays with Spherical and Spatula Tips,” J. Adhes. Sci. Technol. 21, 1281–1296.

    Article  CAS  Google Scholar 

  • Northen, M. T. and Turner, K. L., (2005), “A Batch Fabricated Biomimetic Dry Adhesive,” Nanotechnology, 16, 1159–1166.

    Article  CAS  Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2008), Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics, Springer-Verlag, Heidelberg, Germany.

    Book  Google Scholar 

  • Ohler, A. (1995), “Digital Pad Morphology in Torrent-living Ranid Frogs” Asiat. Herpetol. Res. 6, 85–96.

    Google Scholar 

  • Orr, F. M., Scriven, L. E., and Rivas, A. P. (1975), “Pendular Rings between Solids: Meniscus Properties and Capillary Forces,” J. Fluid. Mech. 67, 723–742.

    Article  Google Scholar 

  • Palacio, M. L. B., Bhushan, B., and Schricker, S. R. (2013), “Hierarchical Nanostructured Polymers for Reversible Adhesion in Biomedical Applications,” Materials Letters 92, 409–412.

    Article  CAS  Google Scholar 

  • Peattie, A. M. and Full, R. J. (2007), “Phylogenetic Analysis of the Scaling of Wet and Dry Biological Fibrillar Adhesives,” Proc. Natl. Acad. Sci. USA 104, 18595–18600.

    Article  CAS  Google Scholar 

  • Persson, B. N. J. (2003), “On the Mechanism of Adhesion in Biological Systems,” J. Chem. Phys. 118, 7614–7621.

    Article  CAS  Google Scholar 

  • Persson, B. N. J. and Gorb, S. (2003), “The Effect of Surface Roughness on the Adhesion of Elastic Plates with Application to Biological Systems,” J. Chem. Phys. 119, 11437–11444.

    Article  CAS  Google Scholar 

  • Pesika, N. S., Tian, Y., Zhao, B., Rosenberg, K., Zeng, H., McGuiggen, P., Autumn, K., and Israelachvili, J. N. (2007), “Peel-Zone Model of Tape Peeling Based on the Gecko Adhesive System,” J. Adhesion 83, 383–401.

    Article  CAS  Google Scholar 

  • Phipps, P. B. P. and Rice, D. W. (1979), “Role of Water in Atmospheric Corrosion,” Corrosion Chemistry, ACS Symposium Series Vol. 89 (ed. by G. R. Brubaker and P. B. P. Phipps), pp. 235–261, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Qu, L., Dai, L., Stone, M., Xia, Z., and Wang, Z. L. (2008), “Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off,” Science 322, 238–242.

    Article  CAS  Google Scholar 

  • Rizzo, N., Gardner, K., Walls, D., Keiper-Hrynko, N., and Hallahan, D. (2006), “Characterization of the Structure and Composition of Gecko Adhesive Setae,” J. Royal Soc. Interf. 3, 441–451.

    Article  Google Scholar 

  • Ruibal, R. and Ernst, V. (1965), “The Structure of the Digital Setae of Lizards,” J. Morphol. 117, 271–294.

    Article  CAS  Google Scholar 

  • Russell, A. P. (1975), “A Contribution to the Functional Morphology of the Foot of the Tokay, Gekko gecko,” J. Zool. Lond. 176, 437–476.

    Google Scholar 

  • Russell, A. P. (1986), “The Morphological Basis of Weight-Bearing in the Scansors of the Tokay Gecko,” Can. J. Zool. 64, 948–955.

    Article  Google Scholar 

  • Schäffer, E., Thurn-Albrecht, T., Russell, T. P. and Steiner, U. (2000) “Electrically Induced Structure Formation and Pattern Transfer,” Nature, 403, 874–877.

    Article  Google Scholar 

  • Schleich, H. H. and Kästle, W. (1986), “Ultrastrukturen an Gecko-Zehen,” Amphibia Reptilia, 7, 141–166.

    Article  Google Scholar 

  • Schmidt, H. R. (1904), “Zur Anatomie und Physiologie der Geckopfote,” Jena. Z. Naturwissen 39, 551.

    Google Scholar 

  • Shah, G. J. and Sitti, M. (2004), “Modeling and Design of Biomimetic Adhesives Inspired by Gecko Foot-Hairs,” IEEE Int. Conf. on Robotics and Biomimetics, 873–878.

    Google Scholar 

  • Simmermacher, G. (1884), “Untersuchungen uber Haftapparate an Tarsalgliedern von Insekten,” Zeitschr. Wissen Zool. 40, 481–556.

    Google Scholar 

  • Sitti, M. (2003), “High Aspect Ratio Polymer Micro/Nano-Structure Manufacturing using Nanoembossing, Nanomolding and Directed Self-Assembly,” Proc. IEEE/ASME Advanced Mechatronics Conf. 2, 886–890.

    Google Scholar 

  • Sitti, M. and Fearing, R. S. (2003) “Synthetic Gecko Foot-Hair for Micro/Nano Structures as Dry Adhesives,” J. Adhesion Sci. Technol. 17, 1055–1073.

    Google Scholar 

  • Spolenak, R., Gorb, S. and Arzt, E., (2005), “Adhesion Design Maps for Bio-Inspired Attachment Systems,” Acta Biomaterialia 1, 5–13.

    Article  Google Scholar 

  • Stork, N. E. (1980), “Experimental Analysis of Adhesion of Chrysolina polita on a Variety of Surfaces,” J. Exp. Biol. 88, 91–107.

    Google Scholar 

  • Stork, N. E. (1983), “A Comparison of the Adhesive Setae on the Feet of Lizards and Arthropods,” J. Nat. Hist., 17, 829–835.

    Article  Google Scholar 

  • Tian, Y., Pesika, N., Zeng, H., Rosenberg, K., Zhao, B., McGuiggan, P., Autumn, K., and Israelachvili, J. (2006), “Adhesion and Friction in Gecko Toe Attachment and Detachment,” Proc. Nat. Acad. Sci. U. S. A. 103, 19320–19325.

    Article  CAS  Google Scholar 

  • Tinkle, D. W. (1992), “Gecko,” Encyclopedia Americana, edited by M. Cummings, Vol. 12, 359, Grolier, U.K.

    Google Scholar 

  • Van der Kloot, W. G. (1992), “Molting,” Encyclopedia Americana, edited by M. Cummings, Vol. 19, 336–337, Grolier, U.K.

    Google Scholar 

  • Wagler, J. G. (1830), Naturliches System der Amphibien, mit vorangehender Classification der Säugthiere und Vögel. Ein Beitrag zur vergleichenden Zoologie, J. G. Cotta’schen Buchhandlung, Munich, Germany.

    Google Scholar 

  • Wan, K. T., Smith, D. T. and Lawn, B. R. (1992), “Fracture and Contact Adhesion Energies of Mica-Mica, Silica-Silica, and Mica-Silica Interfaces in Dry and Moist Atmospheres,” J. Am. Ceram. Soc. 75, 667–676.

    Article  CAS  Google Scholar 

  • Wenzel, R. N. (1936), “Resistance of Solid Surfaces to Wetting by Water,” Ind. Eng. Chem. 28, 988–994.

    Article  CAS  Google Scholar 

  • Williams, E. E. and Peterson, J. A. (1982), “Convergent and Alternative Designs in the Digital Adhesive Pads of Scincid Lizards,” Science 215, 1509–1511.

    Article  CAS  Google Scholar 

  • Yao, H., and Gao, H. (2006), “Mechanics of Robust and Releasable Adhesion in Biology: Bottom-Up Designed Hierarchical Structures of Gecko,” J. Mech. Phys. Solids, 54, 1120–1146.

    Article  Google Scholar 

  • Young, W. C. and Budynas, R. (2001) Roark’s Formulas for Stress and Strain, seventh ed. McGraw Hill, New York.

    Google Scholar 

  • Yurdumakan, B., Raravikar, N. R., Ajayan, P. M. and Dhinojwala, A. (2005), “Synthetic Gecko Foot-Hairs from Multiwalled Carbon Nanotubes,” Chem. Comm. 3799–3801.

    Google Scholar 

  • Zimon, A. D. (1969), Adhesion of Dust and Powder, translated from Russian by M. Corn, Plenum, New York.

    Google Scholar 

  • Zisman, W. A. (1963), “Influence of Constitution on Adhesion,” Ind. Eng. Chem. 55 (10), 18–38.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhushan, B. (2018). Gecko Adhesion. In: Biomimetics. Springer Series in Materials Science, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-319-71676-3_19

Download citation

Publish with us

Policies and ethics