Advertisement

Cosymmetries

  • Joseph Krasil’shchik
  • Alexander Verbovetsky
  • Raffaele Vitolo
Chapter
Part of the Texts & Monographs in Symbolic Computation book series (TEXTSMONOGR)

Abstract

The most common use of cosymmetries is related to construction of conservation laws, because the generating functions of conservation laws are cosymmetries, but they also play an important role in the theory of the tangent (Chap.  6) and the cotangent (Chap.  9) coverings. We give the solution to Problems  1.8,  1.9,  1.10 and  1.13 in this chapter.

References

  1. 3.
    Anderson, I.M., Kamran, N.: Conservation laws and the variational bicomplex for second-order scalar hyperbolic equations in the plane. Acta Appl. Math. 41(1), 135–144 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 18.
    Bocharov, A.V., Chetverikov, V.N., Duzhin, S.V., Khorkova, N.G., Krasilshchik, I.S., Samokhin, A.V., Torkhov, Y.N., Verbovetsky, A.M., Vinogradov, A.M.: In: Krasilshchik, I.S., Vinogradov, A.M. (eds.) Symmetries and Conservation Laws for Differential Equations of Mathematical Physics. Monograph. American Mathematical Society, Providence (1999)Google Scholar
  3. 64.
    Khor’kova, N.G.: On the \(\mathcal {C}\)-spectral sequence of differential equations. Differ. Geom. Appl. 3(3), 219–243 (1993)Google Scholar
  4. 66.
    Khorkova, N.G.: Conservation laws and nonlocal symmetries. Math. Notes 44, 562–568 (1989)Google Scholar
  5. 138.
    Vinogradov, A.M.: The \(\mathcal {C}\)-spectral sequence, Lagrangian formalism, and conservation laws. I. The linear theory. II. The nonlinear theory. J. Math. Anal. Appl. 100, 1–129 (1984)Google Scholar
  6. 139.
    Vinogradov, A.M.: Cohomological Analysis of Partial Differential Equations and Secondary Calculus. American Mathematical Society, Providence (2001)CrossRefzbMATHGoogle Scholar
  7. 156.
    Zhiber, A.V., Sokolov, V.V.: Exactly integrable hyperbolic equations of Liouville type. Russ. Math. Surv. 56(1), 61–101 (2001). https://doi.org/10.4213/rm357 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Joseph Krasil’shchik
    • 1
  • Alexander Verbovetsky
    • 2
  • Raffaele Vitolo
    • 3
  1. 1.V.A. Trapeznikov Institute of Control Sciences RASIndependent University of MoscowMoscowRussia
  2. 2.Independent University of MoscowMoscowRussia
  3. 3.Department of Mathematics and Physics ‘E. De Giorgi’University of SalentoLecceItaly

Personalised recommendations