Internal Coordinates and Total Derivatives

  • Joseph Krasil’shchik
  • Alexander Verbovetsky
  • Raffaele Vitolo
Part of the Texts & Monographs in Symbolic Computation book series (TEXTSMONOGR)


We describe here a general coordinate setting that allows one to deal with computational problems arising in geometry of PDEs listed in Sect.  1.1 and in the theory of integrable systems, in particular. For the convenience of reading, we expose in the beginning and in more detail the needed theoretical material that was concisely presented in Sect.  1.1. The same scheme of exposition is adopted in all the forthcoming chapters.


  1. 5.
    Apel, J., Hemmecke, R.: Detecting unnecessary reductions in an involutive basis computation. J. Symb. Comput. 40, 1131–1149 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 15.
    Baran, H., Marvan, M.: Jets. A software for differential calculus on jet spaces and diffieties. Silesian University in Opava. First version 2003; revised version 2010. Available at:
  3. 20.
    Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 40.
    Getzler, E.: A Darboux theorem for Hamiltonian operators in the formal calculus of variations. Duke Math. J. 111, 535–560 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 44.
    Gumral, H., Nutku, Y.: Bi-hamiltonian structures of D-Boussinesq and Benney–Lax equations. J. Phys. A 27:193–200 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 45.
    Hearn, A.C.: Reduce., version 3.8 edition, 2004. Computer algebra system, currently in development after that it has been released in 2008 as free software at Sourceforge. The manual is available at the website
  7. 51.
    Igonin, S., Verbovetsky, A., Vitolo, R.: Variational multivectors and brackets in the geometry of jet spaces. In: Symmetry in Nonlinear Mathematical Physics. Part 3, pp. 1335–1342. Institute of Mathematics of NAS of Ukraine, Kiev (2003)Google Scholar
  8. 52.
    Janet, M.: Leçons sur les Systèmes d’Équations aux Dérivées Partielles. Gauthier-Villars, Paris (1929)zbMATHGoogle Scholar
  9. 53.
    Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 15, 539–541 (1970)zbMATHGoogle Scholar
  10. 57.
    Kersten, P., Krasilshchik, I., Verbovetsky, A.: Hamiltonian operators and -coverings. J. Geom. Phys. 50, 273–302 (2004)Google Scholar
  11. 61.
    Kersten, P., Krasilshchik, I., Verbovetsky, A.: A geometric study of the dispersionless Boussinesq type equation. Acta Appl. Math. 90, 143–178 (2006)Google Scholar
  12. 82.
    Krasilshchik, J., Verbovetsky, A.M.: Geometry of jet spaces and integrable systems. J. Geom. Phys. 61, 1633–1674 (2011). arXiv:1002.0077Google Scholar
  13. 93.
    Martínez Alonso, L., Shabat, A.B.: Energy-dependent potentials revisited: a universal hierarchy of hydrodynamic type. Phys. Lett. A 299, 359–365 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 94.
    Martínez Alonso, L., Shabat, A.B.: Hydrodynamic reductions and solutions of a universal hierarchy. Theor. Math. Phys. 140, 1073–1085 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 97.
    Marvan, M.: Sufficient set of integrability conditions of an orthonomic system. Found. Comput. Math. 9, 651–674 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 106.
    Norman, A.C., Vitolo, R.: Inside Reduce. Part of the official Reduce documentation, included in the source code of Reduce. See also (2014)
  17. 115.
    Plebanski, J.F.: Some solutions of complex Einstein equations. J. Math. Phys. 16(12), 2395–2402 (1975)MathSciNetCrossRefGoogle Scholar
  18. 116.
    Pommaret, J.-F.: Systems of Partial Differential Equations and Lie Pseudogroups. Gordon and Breach, New York (1978)zbMATHGoogle Scholar
  19. 123.
    Riquier, C.: Les Systèmes d’Équations aux Dérivées Partielles. Gauthier-Villars, Paris (1910)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Joseph Krasil’shchik
    • 1
  • Alexander Verbovetsky
    • 2
  • Raffaele Vitolo
    • 3
  1. 1.V.A. Trapeznikov Institute of Control Sciences RASIndependent University of MoscowMoscowRussia
  2. 2.Independent University of MoscowMoscowRussia
  3. 3.Department of Mathematics and Physics ‘E. De Giorgi’University of SalentoLecceItaly

Personalised recommendations