Improved Policy Networks for Computer Go

  • Tristan CazenaveEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10664)


Golois uses residual policy networks to play Go. Two improvements to these residual policy networks are proposed and tested. The first one is to use three output planes. The second one is to add Spatial Batch Normalization.


  1. 1.
    Clark, C., Storkey, A.: Training deep convolutional neural networks to play Go. In: Proceedings of the 32nd International Conference on Machine Learning (ICML-15), JMLR, pp. 1766–1774 (2015)Google Scholar
  2. 2.
    Maddison, C.J., Huang, A., Sutskever, I., Silver, D.: Move evaluation in Go using deep convolutional neural networks. arXiv preprint arXiv:1412.6564 (2014)
  3. 3.
    Tian, Y., Zhu, Y.: Better computer Go player with neural network and long-term prediction. arXiv preprint arXiv:1511.06410 (2015)
  4. 4.
    Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)CrossRefGoogle Scholar
  5. 5.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)
  6. 6.
    Cazenave, T.: Residual networks for computer Go. IEEE Trans. Comput. Intell. AI in Games (2017, accepted for publication)Google Scholar
  7. 7.
    Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 807–814. Omnipress (2010)Google Scholar
  8. 8.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning (ICML 2015), JMLR, pp. 448–456 (2015)Google Scholar
  9. 9.
    He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). CrossRefGoogle Scholar
  10. 10.
    Hall, T.M., Fairbairn, J.: Games of Go on download (2016).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Université Paris-Dauphine, PSL Research University, CNRS, LAMSADEParisFrance

Personalised recommendations