Influence of Search Depth on Position Evaluation

  • Matej GuidEmail author
  • Ivan Bratko
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10664)


By using a well-known chess program and a large data set of chess positions from real games we demonstrate empirically that with increasing search depth backed-up evaluations of won positions tend to increase, while backed-up evaluations of lost positions tend to decrease. We show three implications of this phenomenon in practice and in the theory of computer game playing. First, we show that heuristic evaluations obtained by searching to different search depths are not directly comparable. Second, we show that fewer decision changes with deeper search are a direct consequence of this property of heuristic evaluation functions. Third, we demonstrate that knowing this property may be used to develop a method for detecting fortresses in chess, which is an unsolved task in computer chess.


  1. 1.
    Abramson, B.: Control strategies for two-player games. ACM Comput. Surv. 21, 137–161 (1989)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Thompson, K.: Computer chess strength. In: Advances in Computer Chess, vol. 3, pp. 55–56. Pergamon Press (1982)Google Scholar
  3. 3.
    Luštrek, M., Gams, M., Bratko, I.: Is real-valued minimax pathological? Artif. Intell. 170, 620–642 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Pearl, J.: On the nature of pathology in game searching. Artif. Intell. 20, 427–453 (1983)CrossRefzbMATHGoogle Scholar
  5. 5.
    Scheucher, A., Kaindl, H.: Benefits of using multivalued functions for minimaxing. Artif. Intell. 99, 187–208 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gomboc, D., Marsland, T.A., Buro, M.: Evaluation function tuning via ordinal correlation. In: Van Den Herik, H.J., Iida, H., Heinz, E.A. (eds.) Advances in Computer Games: Many Games, Many Challenges. ITIFIP, vol. 135, pp. 1–18. Springer, Boston (2004). Google Scholar
  7. 7.
    Donkers, H.H.L.M., van den Herik, H.J., Uiterwijk, J.W.H.M.: Selecting evaluation functions in opponent-model search. Theoret. Comput. Sci. 349, 245–267 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Nau, D.S., Luštrek, M., Parker, A., Bratko, I., Gams, M.: When is it better not to look ahead? Artif. Intell. 174, 1323–1338 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Heinz, E.: Dark Thought goes deep. ICCA J. 21, 228–244 (1998)Google Scholar
  10. 10.
    Heinz, E.: Modeling the “go deep” behaviour of CraFty and Dark Thought. In: Advances in Computer Chess, vol. 9, pp. 59–71, IKAT, Universiteit Maastricht (1999)Google Scholar
  11. 11.
    Heinz, E.: Self-play in computer chess revisited. In: Advances in Computer Chess, vol. 9, pp. 73–91. IKAT, Universiteit Maastricht (1999)Google Scholar
  12. 12.
    Heinz, E.: Self-play, deep search and diminishing returns. ICGA J. 24, 75–79 (2001)Google Scholar
  13. 13.
    Heinz, E.: Follow-up on self-play, deep search, and diminishing returns. ICGA J. 26, 75–80 (2003)Google Scholar
  14. 14.
    Hyatt, R., Newborn, M.: Crafty goes deep. ICGA J. 20, 79–86 (1997)Google Scholar
  15. 15.
    Junghanns, A., Schaeffer, J.: Search versus knowledge in game-playing programs revisited. In: Proceeings of the 15th International Joint Conference on Artificial Intelligence, vol. 1, pp. 692–697. Morgan Kaufmann (1999)Google Scholar
  16. 16.
    Steenhuisen, J.R.: New results in deep-search behaviour. ICGA J. 28, 203–213 (2005)Google Scholar
  17. 17.
    Guid, M., Bratko, I.: Factors affecting diminishing returns for searching deeper. ICGA J. 30, 65–73 (2007)Google Scholar
  18. 18.
    Müller, K., Pajeken, W.: How to Play Chess Endings. Gambit Publications, London (2008)Google Scholar
  19. 19.
    Guid, M., Bratko, I.: Computer analysis of world chess champions. ICGA J. 29, 3–14 (2006)Google Scholar
  20. 20.
    Guid, M., Perez, A., Bratko, I.: How trustworthy is Crafty’s analysis of world chess champions? ICGA J. 31, 131–144 (2008)Google Scholar
  21. 21.
    Guid, M., Bratko, I.: Using heuristic-search based engines for estimating human skill at chess. ICGA J. 34, 71–81 (2011)CrossRefGoogle Scholar
  22. 22.
    Newborn, M.: A hypothesis concerning the strength of chess programs. ICCA J. 8, 209–215 (1985)Google Scholar
  23. 23.
    Guid, M., Bratko, I.: Detecting fortresses in chess. Elektrotehniski Vestnik 79, 35 (2012)Google Scholar
  24. 24.
    Dvoretsky, M.: Dvoretsky’s Endgame Manual, 2nd edn. Russell Enterprises, Inc., Bethlehem (2008)Google Scholar
  25. 25.
    Friedl, F.: On human and computer intelligence in chess (2017). Accessed 15 May 2017

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Computer and Information ScienceUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations