Vascular Access for Left Heart Catheterization

  • Aditya Mandawat
  • Sunil V. RaoEmail author


While traditionally viewed as benign when compared with nonaccess-site complications, vascular access-site complications are associated with a short- and long-term risk of morbidity or mortality as well as increased costs. In a study of 17,901 consecutive patients undergoing transfemoral PCI at the Mayo Clinic, Doyle et al. demonstrated that major femoral complications (including major hematoma, external bleeding, and retroperitoneal bleeding) were independently associated with a 30-day adjusted hazard ratio (HR) for a mortality of 9.96 (95% confidence interval [95% CI]: 6.94–14.3, p < 0.001). Similarly, Yatskar et al. reported that hematomas requiring transfusions were associated with an increased 1-year mortality (HR 1.65, 95% CI 1.01–2.70, p = 0.048) among patients undergoing PCI during the NHLBI Dynamic registry recruitment waves. While relatively uncommon, retroperitoneal bleeding remains a catastrophic vascular access-site complication, with 73.5% requiring transfusion and 10.4% dying during hospitalization. Furthermore, in an era of increasing public concern regarding healthcare costs, it is also worth noting that even after adjustments for baseline differences among patients enrolled in an economic sub-study of Gusto IIb, each moderate or severe bleeding event increased costs by $3770 and each transfusion event increased costs by $2080. In current practice, while the risk of major bleeding is dependent on patient characteristics and to an extent the choice of antithrombotic agent, the choice of vascular access strategy (transfemoral vs. transradial) and a meticulous attention to good technique, proper equipment, and skilled operators may reduce major bleeding and thereby reduce morbidity, mortality, as well as costs.


Vascular access Left-heart catheterization Transradial Transulnar Transfemoral Vascular complications Bleeding Closure devices 


  1. 1.
    Doyle BJ, Ting HH, Bell MR, Lennon RJ, Mathew V, Singh M, et al. Major femoral bleeding complications after percutaneous coronary intervention: incidence, predictors, and impact on long-term survival among 17,901 patients treated at the Mayo Clinic from 1994 to 2005. JACC Cardiovasc Interv. 2008;1(2):202–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Yatskar L, Selzer F, Feit F, Cohen HA, Jacobs AK, Williams DO, et al. Access site hematoma requiring blood transfusion predicts mortality in patients undergoing percutaneous coronary intervention: data from the National Heart, Lung, and Blood Institute Dynamic Registry. Catheter Cardiovasc Interv. 2007;69(7):961–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Ellis SG, Bhatt D, Kapadia S, Lee D, Yen M, Whitlow PL. Correlates and outcomes of retroperitoneal hemorrhage complicating percutaneous coronary intervention. Catheter Cardiovasc Interv. 2006;67(4):541–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Rao SV, Kaul PR, Liao L, Armstrong PW, Ohman EM, Granger CB, et al. Association between bleeding, blood transfusion, and costs among patients with non–ST-segment elevation acute coronary syndromes. Am Heart J. 2008;155(2):369–74.CrossRefPubMedGoogle Scholar
  5. 5.
    Kern MJ. Cardiac catheterization on the road less travelednavigating the radial versus femoral debate. J Am Coll Cardiol Intv. 2009;2(11):1055–6.CrossRefGoogle Scholar
  6. 6.
    Kiemeneij F, Laarman GJ, Odekerken D, Slagboom T, van der Wieken R. A randomized comparison of percutaneous transluminal coronary angioplasty by the radial, brachial and femoral approaches: the access study. J Am Coll Cardiol. 1997;29(6):1269–75.CrossRefPubMedGoogle Scholar
  7. 7.
    Saito S, Tanaka S, Hiroe Y, Miyashita Y, Takahashi S, Tanaka K, et al. Comparative study on transradial approach vs. transfemoral approach in primary stent implantation for patients with acute myocardial infarction: results of the test for myocardial infarction by prospective unicenter randomization for access sites (TEMPURA) trial. Catheter Cardiovasc Interv. 2003;59(1):26–33.CrossRefPubMedGoogle Scholar
  8. 8.
    Mehta SR, Jolly SS, Cairns J, Niemela K, Rao SV, Cheema AN, et al. Effects of radial versus femoral artery access in patients with acute coronary syndromes with or without ST-segment elevation. J Am Coll Cardiol. 2012;60(24):2490–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Romagnoli E, Biondi-Zoccai G, Sciahbasi A, Politi L, Rigattieri S, Pendenza G, et al. Radial versus femoral randomized investigation in ST-segment elevation acute coronary syndrome: the RIFLE-STEACS (Radial Versus Femoral Randomized Investigation in ST-Elevation Acute Coronary Syndrome) study. J Am Coll Cardiol. 2012;60(24):2481–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Bernat I, Horak D, Stasek J, Mates M, Pesek J, Ostadal P, et al. ST-segment elevation myocardial infarction treated by radial or femoral approach in a multicenter randomized clinical trial: the STEMI-RADIAL Trial. J Am Coll Cardiol. 2014;63(10):964–72.CrossRefPubMedGoogle Scholar
  11. 11.
    Valgimigli M, Gagnor A, Calabró P, Frigoli E, Leonardi S, Zaro T, et al. Radial versus femoral access in patients with acute coronary syndromes undergoing invasive management: a randomised multicentre trial. Lancet. 2015;385(9986):2465–76.CrossRefPubMedGoogle Scholar
  12. 12.
    Rao SV, Hess CN, Barham B, Aberle LH, Anstrom KJ, Patel TB, et al. A registry-based randomized trial comparing radial and femoral approaches in women undergoing percutaneous coronary intervention: the SAFE-PCI for women (study of access site for enhancement of PCI for women) trial. J Am Coll Cardiol Intv. 2014;7(8):857–67.CrossRefGoogle Scholar
  13. 13.
    Jolly SS, Amlani S, Hamon M, Yusuf S, Mehta SR. Radial versus femoral access for coronary angiography or intervention and the impact on major bleeding and ischemic events: a systematic review and meta-analysis of randomized trials. Am Heart J. 2009;157(1):132–40.CrossRefPubMedGoogle Scholar
  14. 14.
    Bavishi C, Panwar SR, Dangas GD, Barman N, Hasan CM, Baber U, et al. Meta-analysis of radial versus femoral access for percutaneous coronary interventions in non-ST-segment elevation acute coronary syndrome. Am J Cardiol. 2016;117(2):172–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Rao SV, Ou F-S, Wang TY, Roe MT, Brindis R, Rumsfeld JS, et al. Trends in the prevalence and outcomes of radial and femoral approaches to percutaneous coronary intervention: a report from the national cardiovascular data registry. J Am Coll Cardiol Intv. 2008;1(4):379–86.CrossRefGoogle Scholar
  16. 16.
    Valgimigli M, Campo G, Penzo C, Tebaldi M, Biscaglia S, Ferrari R. Transradial coronary catheterization and intervention across the whole spectrum of Allen test results. J Am Coll Cardiol. 2014;63(18):1833–41.CrossRefPubMedGoogle Scholar
  17. 17.
    Marso SP, Amin AP, House JA, Kennedy KF, Spertus JA, Rao SV, et al. Association between use of bleeding avoidance strategies and risk of periprocedural bleeding among patients undergoing percutaneous coronary intervention. JAMA. 2010;303(21):2156–64.CrossRefPubMedGoogle Scholar
  18. 18.
    Rao SV, LA MC, Spertus JA, Krone RJ, Singh M, Fitzgerald S, et al. An updated bleeding model to predict the risk of post-procedure bleeding among patients undergoing percutaneous coronary intervention: a report using an expanded bleeding definition from the National Cardiovascular Data Registry CathPCI Registry. J Am Coll Cardiol Interv. 2013;6(9):897–904.CrossRefGoogle Scholar
  19. 19.
    Rao SC, Chhatriwalla AK, Kennedy KF, Decker CJ, Gialde E, Spertus JA, et al. Pre-procedural estimate of individualized bleeding risk impacts physicians; utilization of bivalirudin during percutaneous coronary intervention. J Am Coll Cardiol. 2013;61(18):1847–52.CrossRefPubMedGoogle Scholar
  20. 20.
    Steffenino G, Viada E, Marengo B, Canale R. Effectiveness of video-based patient information before percutaneous cardiac interventions. J Cardiovasc Med (Hagerstown MD). 2007;8(5):348–53.CrossRefGoogle Scholar
  21. 21.
    Bertrand OF, Rao SV, Pancholy S, Jolly SS, Rodés-Cabau J, Larose É, et al. Transradial approach for coronary angiography and interventions: results of the first international transradial practice survey. J Am Coll Cardiol Intv. 2010;3(10):1022–31.CrossRefGoogle Scholar
  22. 22.
    Dehghani P, Mohammad A, Bajaj R, Hong T, Suen CM, Sharieff W, et al. Mechanism and predictors of failed transradial approach for percutaneous coronary interventions. J Am Coll Cardiol Intv. 2009;2(11):1057–64.CrossRefGoogle Scholar
  23. 23.
    Kumar Chugh S, Chugh S, Chugh Y, Rao SV. Feasibility and utility of pre-procedure ultrasound imaging of the arm to facilitate transradial coronary diagnostic and interventional procedures (PRIMAFACIE-TRI). Catheter Cardiovasc Interv. 2013;82(1):64–73.CrossRefGoogle Scholar
  24. 24.
    Lo TS, Nolan J, Fountzopoulos E, Behan M, Butler R, Hetherington SL, et al. Radial artery anomaly and its influence on transradial coronary procedural outcome. Heart. 2009;95(5):410–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Patel T, Shah S, Pancholy S, Rao S, Bertrand OF, Kwan T. Balloon-assisted tracking: a must-know technique to overcome difficult anatomy during transradial approach. Catheter Cardiovasc Interv. 2014;83(2):211–20.CrossRefPubMedGoogle Scholar
  26. 26.
    Sciahbasi A, Romagnoli E, Trani C, Burzotta F, Pendenza G, Tommasino A, et al. Evaluation of the “learning curve” for left and right radial approach during percutaneous coronary procedures. Am J Cardiol. 2011;108(2):185–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Kawashima O, Endoh N, Terashima M, Ito Y, Abe S, Ootomo T, et al. Effectiveness of right or left radial approach for coronary angiography. Catheter Cardiovasc Interv. 2004;61(3):333–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Norgaz T, Gorgulu S, Dagdelen S. A randomized study comparing the effectiveness of right and left radial approach for coronary angiography. Catheter Cardiovasc Interv. 2012;80(2):260–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Burzotta F, Trani C, Todaro D, Romagnoli E, Niccoli G, Ginnico F, et al. Comparison of the transradial and transfemoral approaches for coronary angiographic evaluation in patients with internal mammary artery grafts. J Cardiovasc Med (Hagerstown MD). 2008;9(3):263–6.CrossRefGoogle Scholar
  30. 30.
    Sciahbasi A, Romagnoli E, Burzotta F, Trani C, Sarandrea A, Summaria F, et al. Transradial approach (left vs right) and procedural times during percutaneous coronary procedures: TALENT study. Am Heart J. 2011;161(1):172–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Xia SL, Zhang XB, Zhou JS, Gao X. Comparative efficacy and safety of the left versus right radial approach for percutaneous coronary procedures: a meta-analysis including 6870 patients. Braz J Med Biol Res. 2015;48(8):743–50.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Seto AH, Roberts JS, Abu-Fadel MS, Czak SJ, Latif F, Jain SP, et al. Real-time ultrasound guidance facilitates transradial access: RAUST (Radial Artery Access with Ultrasound Trial). J Am Coll Cardiol Interv. 2015;8(2):283–91.CrossRefGoogle Scholar
  33. 33.
    Pancholy SB, Sanghvi KA, Patel TM. Radial artery access technique evaluation trial: randomized comparison of seldinger versus modified seldinger technique for arterial access for transradial catheterization. Catheter Cardiovasc Interv. 2012;80(2):288–91.CrossRefPubMedGoogle Scholar
  34. 34.
    Pancholy SB, Coppola J, Patel T. Subcutaneous administration of nitroglycerin to facilitate radial artery cannulation. Catheter Cardiovasc Interv. 2006;68(3):389–91.CrossRefPubMedGoogle Scholar
  35. 35.
    Kotowycz MA, Džavík V. Radial artery patency after transradial catheterization. Circ Cardiovasc Interv. 2012;5(1):127–33.CrossRefPubMedGoogle Scholar
  36. 36.
    Hahalis G, Tsigkas G, Xanthopoulou I, Deftereos S, Ziakas A, Raisakis K, et al. Transulnar compared with transradial artery approach as a default strategy for coronary procedures: a randomized trial. The Transulnar or Transradial Instead of Coronary Transfemoral Angiographies Study (the AURA of ARTEMIS Study). Circ Cardiovasc Interv. 2013;6(3):252–61.CrossRefPubMedGoogle Scholar
  37. 37.
    Aptecar E, Pernes JM, Chabane-Chaouch M, Bussy N, Catarino G, Shahmir A, et al. Transulnar versus transradial artery approach for coronary angioplasty: the PCVI-CUBA study. Catheter Cardiovasc Interv. 2006;67(5):711–20.CrossRefPubMedGoogle Scholar
  38. 38.
    Dahal K, Rijal J, Lee J, Korr KS, Azrin M. Transulnar versus transradial access for coronary angiography or percutaneous coronary intervention: a meta-analysis of randomized controlled trials. Catheter Cardiovasc Interv. 2016;87(5):857–65.CrossRefPubMedGoogle Scholar
  39. 39.
    Rathore S, Stables RH, Pauriah M, Hakeem A, Mills JD, Palmer ND, et al. Impact of length and hydrophilic coating of the introducer sheath on radial artery spasm during transradial coronary intervention: a randomized study. J Am Coll Cardiol Intv. 2010;3(5):475–83.CrossRefGoogle Scholar
  40. 40.
    Lim J, Suri A, Chua TP. Steroid-responsive sterile inflammation after transradial cardiac catheterisation using a sheath with hydrophilic coating. Heart. 2009;95(14):1202.CrossRefPubMedGoogle Scholar
  41. 41.
    Kozak M, Adams DR, Ioffreda MD, Nickolaus MJ, Seery TJ, Chambers CE, et al. Sterile inflammation associated with transradial catheterization and hydrophilic sheaths. Catheter Cardiovasc Interv. 2003;59(2):207–13.CrossRefPubMedGoogle Scholar
  42. 42.
    Zellner C, Yeghiazarians Y, Ports TA, Ursell P, Boyle AJ. Sterile radial artery granuloma after transradial cardiac catheterization. Cardiovasc Revasc Med. 2011;12(3):187–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Yoshimachi F, Kiemeneij F, Masutani M, Matsukage T, Takahashi A, Ikari Y. Safety and feasibility of the new 5 Fr Glidesheath Slender. Cardiovasc Interv Ther. 2016;31:38–41.CrossRefPubMedGoogle Scholar
  44. 44.
    Jia DA, Zhou YJ, Shi DM, Liu YY, Wang JL, Liu XL, et al. Incidence and predictors of radial artery spasm during transradial coronary angiography and intervention. Chin Med J (Engl). 2010;123(7):843–7.Google Scholar
  45. 45.
    Dharma S, Shah S, Radadiya R, Vyas C, Pancholy S, Patel T. Nitroglycerin plus diltiazem versus nitroglycerin alone for spasm prophylaxis with transradial approach. J Invasive Cardiol. 2012;24(3):122–5.PubMedGoogle Scholar
  46. 46.
    Chen CW, Lin CL, Lin TK, Lin CD. A simple and effective regimen for prevention of radial artery spasm during coronary catheterization. Cardiology. 2006;105(1):43–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Hildick-Smith DJ, Lowe MD, Walsh JT, Ludman PF, Stephens NG, Schofield PM, et al. Coronary angiography from the radial artery—experience, complications and limitations. Int J Cardiol. 1998;64(3):231–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Calvino-Santos RA, Vazquez-Rodriguez JM, Salgado-Fernandez J, Vazquez-Gonzalez N, Perez-Fernandez R, Vazquez-Rey E, et al. Management of iatrogenic radial artery perforation. Catheter Cardiovasc Interv. 2004;61(1):74–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Pancholy S, Coppola J, Patel T, Roke-Thomas M. Prevention of radial artery occlusion-patent hemostasis evaluation trial (PROPHET study): a randomized comparison of traditional versus patency documented hemostasis after transradial catheterization. Catheter Cardiovasc Interv. 2008;72(3):335–40.CrossRefPubMedGoogle Scholar
  50. 50.
    Pancholy SB, Bernat I, Bertrand OF, Patel TM. Prevention of radial artery occlusion after transradial catheterization: the PROPHET-II randomized trial. J Am Coll Cardiol Intv. 2016;9(19):1992–9.CrossRefGoogle Scholar
  51. 51.
    Bernat I, Bertrand OF, Rokyta R, Kacer M, Pesek J, Koza J, et al. Efficacy and safety of transient ulnar artery compression to recanalize acute radial artery occlusion after transradial catheterization. Am J Cardiol. 2011;107(11):1698–701.CrossRefPubMedGoogle Scholar
  52. 52.
    Bangalore S, Bhatt DL. Femoral arterial access and closure. Circulation. 2011;124(5):e147-e56.CrossRefGoogle Scholar
  53. 53.
    Dotter CT, Rosch J, Robinson M. Fluoroscopic guidance in femoral artery puncture. Radiology. 1978;127(1):266–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Seto AH, Abu-Fadel MS, Sparling JM, Zacharias SJ, Daly TS, Harrison AT, et al. Real-time ultrasound guidance facilitates femoral arterial access and reduces vascular complications: FAUST (femoral arterial access with ultrasound trial). J Am Coll Cardiol Intv. 2010;3(7):751–8.CrossRefGoogle Scholar
  55. 55.
    Paulson EK, Sheafor DH, Kliewer MA, Nelson RC, Eisenberg LB, Sebastian MW, et al. Treatment of iatrogenic femoral arterial pseudoaneurysms: comparison of US-guided thrombin injection with compression repair. Radiology. 2000;215(2):403–8.CrossRefPubMedGoogle Scholar
  56. 56.
    La Perna L, Olin JW, Goines D, Childs MB, Ouriel K. Ultrasound-guided thrombin injection for the treatment of postcatheterization Pseudoaneurysms. Circulation. 2000;102(19):2391.CrossRefPubMedGoogle Scholar
  57. 57.
    Webber GW, Jang J, Gustavson S, Olin JW. Contemporary management of postcatheterization pseudoaneurysms. Circulation. 2007;115(20):2666.CrossRefPubMedGoogle Scholar
  58. 58.
    Kelm M, Perings SM, Jax T, Lauer T, Schoebel FC, Heintzen MP, et al. Incidence and clinical outcome of iatrogenic femoral arteriovenous fistulas: implications for risk stratification and treatment. J Am Coll Cardiol. 2002;40(2):291–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Schulz-Schupke S, Helde S, Gewalt S, Ibrahim T, Linhardt M, Haas K, et al. Comparison of vascular closure devices vs manual compression after femoral artery puncture: the ISAR-CLOSURE randomized clinical trial. JAMA. 2014;312(19):1981–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Duke University Medical CenterDurhamUSA
  2. 2.Durham VA Medical CenterDurhamUSA

Personalised recommendations