Advertisement

Echocardiography in Heart Failure

  • Manish Bansal
  • Partho P. SenguptaEmail author
  • Bijoy K. Khandheria
Chapter

Abstract

Heart failure is referred to a constellation of clinical signs and symptoms that results from either an inadequate ‘forward’ cardiac output (e.g. fatigue, cardiac cachexia, hypotension) or ‘backward’ circulatory congestion (e.g. dyspnea, hepatomegaly and ascites, dependent edema). It is estimated that nearly five million Americans suffer from heart failure, with an incidence approaching 10 per 1000 population among persons older than 65 years of age.

Keywords

Heart failure Echocardiography LV dysfunction Remodeling 

References

  1. 1.
    Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart. 2007;93:1137–46.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Dhir M, Nagueh SF. Echocardiography and prognosis of heart failure. Curr Opin Cardiol. 2002;17:253–6.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Jessup M, Brozena S. Heart failure. N Engl J Med. 2003;348:2007–18.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62:e147–239.CrossRefGoogle Scholar
  5. 5.
    Eichhorn EJ, Grayburn PA, Mayer SA, et al. Myocardial contractile reserve by dobutamine stress echocardiography predicts improvement in ejection fraction with beta-blockade in patients with heart failure: the Beta-Blocker Evaluation of Survival Trial (BEST). Circulation. 2003;108:2336–41.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–200.CrossRefGoogle Scholar
  7. 7.
    Devereux RB, Roman MJ, Palmieri V, et al. Prognostic implications of ejection fraction from linear echocardiographic dimensions: the Strong Heart Study. Am Heart J. 2003;146:527–34.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39 e14.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    McGowan JH, Cleland JG. Reliability of reporting left ventricular systolic function by echocardiography: a systematic review of 3 methods. Am Heart J. 2003;146:388–97.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355:251–9.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Vasan RS. Diastolic heart failure. BMJ. 2003;327:1181–2.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289:194–202.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Naqvi TZ. Diastolic function assessment incorporating new techniques in Doppler echocardiography. Rev Cardiovasc Med. 2003;4:81–99.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Ommen SR, Nishimura RA. A clinical approach to the assessment of left ventricular diastolic function by Doppler echocardiography: update 2003. Heart. 2003;89(Suppl 3):iii18–23.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Garcia MJ, Ares MA, Asher C, Rodriguez L, Vandervoort P, Thomas JD. An index of early left ventricular filling that combined with pulsed Doppler peak E velocity may estimate capillary wedge pressure. J Am Coll Cardiol. 1997;29:448–54.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Vitarelli A, Gheorghiade M. Transthoracic and transesophageal echocardiography in the hemodynamic assessment of patients with congestive heart failure. Am J Cardiol. 2000;86:36G–40G.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Bruch C, Schmermund A, Marin D, et al. Tei-index in patients with mild-to-moderate congestive heart failure. Eur Heart J. 2000;21:1888–95.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29:277–314.CrossRefGoogle Scholar
  19. 19.
    Mor-Avi V, Lang RM, Badano LP, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr. 2011;24:277–313.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Omar AM, Bansal M, Sengupta PP. Advances in echocardiographic imaging in heart failure with reduced and preserved ejection fraction. Circ Res. 2016;119:357–74.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Claus P, Omar AM, Pedrizzetti G, Sengupta PP, Nagel E. Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications. JACC Cardiovasc Imaging. 2015;8:1444–60.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Meimoun P, Elmkies F, Benali T, et al. Assessment of left ventricular twist mechanics by two-dimensional strain in severe aortic stenosis with preserved ejection fraction. Ann Cardiol Angeiol (Paris). 2011;60:259–66.CrossRefGoogle Scholar
  23. 23.
    Kraigher-Krainer E, Shah AM, Gupta DK, et al. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2014;63:447–56.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Vinereanu D, Nicolaides E, Tweddel AC, Fraser AG. “Pure” diastolic dysfunction is associated with long-axis systolic dysfunction. Implications for the diagnosis and classification of heart failure. Eur J Heart Fail. 2005;7:820–8.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Sengupta PP, Krishnamoorthy VK, Abhayaratna WP, et al. Disparate patterns of left ventricular mechanics differentiate constrictive pericarditis from restrictive cardiomyopathy. JACC Cardiovasc Imaging. 2008;1:29–38.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Sengupta PP, Narula J. Reclassifying heart failure: predominantly subendocardial, subepicardial, and transmural. Heart Fail Clin. 2008;4:379–82.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Beau SL, Tolley TK, Saffitz JE. Heterogeneous transmural distribution of beta-adrenergic receptor subtypes in failing human hearts. Circulation. 1993;88:2501–9.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Gruner Svealv B, Tang MS, Waagstein F, Andersson B. Pronounced improvement in systolic and diastolic ventricular long axis function after treatment with metoprolol. Eur J Heart Fail. 2007;9:678–83.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Cordero-Reyes AM, Youker K, Estep JD, Torre-Amione G, Nagueh SF. Molecular and cellular correlates of cardiac function in end-stage DCM: a study using speckle tracking echocardiography. JACC Cardiovasc Imaging. 2014;7:441–52.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Sengelov M, Jorgensen PG, Jensen JS, et al. Global longitudinal strain is a superior predictor of all-cause mortality in heart failure with reduced ejection fraction. JACC Cardiovasc Imaging. 2015;8:1351–9.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Hung CL, Verma A, Uno H, et al. Longitudinal and circumferential strain rate, left ventricular remodeling, and prognosis after myocardial infarction. J Am Coll Cardiol. 2010;56(22):1812.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Abate E, Hoogslag GE, Antoni ML, et al. Value of three-dimensional speckle-tracking longitudinal strain for predicting improvement of left ventricular function after acute myocardial infarction. Am J Cardiol. 2012;110(7):961.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Bochenek T, Wita K, Tabor Z, et al. Value of speckle-tracking echocardiography for prediction of left ventricular remodeling in patients with ST-elevation myocardial infarction treated by primary percutaneous intervention. J Am Soc Echocardiogr. 2011;24:1342–8.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Altiok E, Tiemann S, Becker M, et al. Myocardial deformation imaging by two-dimensional speckle-tracking echocardiography for prediction of global and segmental functional changes after acute myocardial infarction: a comparison with late gadolinium enhancement cardiac magnetic resonance. J Am Soc Echocardiogr. 2014;27:249–57.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Iwahashi N, Gohbara M, Kataoka S, et al. Global longitudinal strain by 3d speckle tracking after St-elevation myocardial infarction is useful for predicting left ventricular remodeling: comparison with Tc99m-Sestamibi. J Am Coll Cardiol. 2015;65:A1228.CrossRefGoogle Scholar
  36. 36.
    Altiok E, Becker M, Zwicker C, et al. Layer-specific analysis of myocardial deformation with 2d speckle-tracking echocardiography for prediction of functional recovery in acute myocardial infarction. J Am Coll Cardiol. 2012;59:E1142.CrossRefGoogle Scholar
  37. 37.
    Shin SH, Hung CL, Uno H, et al. Mechanical dyssynchrony after myocardial infarction in patients with left ventricular dysfunction, heart failure, or both. Circulation. 2010;121:1096–103.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Shah AM, Claggett B, Sweitzer NK, et al. Prognostic importance of impaired systolic function in heart failure with preserved ejection fraction and the impact of spironolactone. Circulation. 2015;132:402–14.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Herrmann S, Bijnens B, Stork S, et al. Using simple imaging markers to predict prognosis in patients with aortic valve stenosis and unacceptable high risk for operation. Am J Cardiol. 2013;112:1819–27.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Galli E, Lancellotti P, Sengupta PP, Donal E. LV mechanics in mitral and aortic valve diseases: value of functional assessment beyond ejection fraction. JACC Cardiovasc Imaging. 2014;7:1151–66.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Lainchbury JG, Redfield MM. Doppler echocardiographic-guided diagnosis and therapy of heart failure. Curr Cardiol Rep. 1999;1:55–66.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Gisbert A, Souliere V, Denault AY, et al. Dynamic quantitative echocardiographic evaluation of mitral regurgitation in the operating department. J Am Soc Echocardiogr. 2006;19:140–6.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Lancellotti P, Tribouilloy C, Hagendorff A, et al. Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2013;14:611–44.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Stainback RF, Estep JD, Agler DA, et al. Echocardiography in the management of patients with left ventricular assist devices: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2015;28:853–909.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Badano LP, Miglioranza MH, Edvardsen T, et al. European Association of Cardiovascular Imaging/Cardiovascular Imaging Department of the Brazilian Society of Cardiology recommendations for the use of cardiac imaging to assess and follow patients after heart transplantation. Eur Heart J Cardiovasc Imaging. 2015;16:919–48.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    McMurray JJ, Adamopoulos S, Anker SD, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33:1787–847.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Peura JL, Colvin-Adams M, Francis GS, et al. Recommendations for the use of mechanical circulatory support: device strategies and patient selection: a scientific statement from the American Heart Association. Circulation. 2012;126:2648–67.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Topilsky Y, Oh JK, Shah DK, et al. Echocardiographic predictors of adverse outcomes after continuous left ventricular assist device implantation. JACC Cardiovasc Imaging. 2011;4:211–22.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51:2163–72.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kormos RL, Teuteberg JJ, Pagani FD, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139:1316–24.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Dang NC, Topkara VK, Mercando M, et al. Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Heart Lung Transplant. 2006;25:1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Santambrogio L, Bianchi T, Fuardo M, et al. Right ventricular failure after left ventricular assist device insertion: preoperative risk factors. Interact Cardiovasc Thorac Surg. 2006;5:379–82.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Atluri P, Goldstone AB, Fairman AS, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96:857–63; discussion 863-4PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Potapov EV, Stepanenko A, Dandel M, et al. Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J Heart Lung Transplant. 2008;27:1275–81.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Vivo RP, Cordero-Reyes AM, Qamar U, et al. Increased right-to-left ventricle diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device. J Heart Lung Transplant. 2013;32:792–9.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Grant AD, Smedira NG, Starling RC, Marwick TH. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol. 2012;60:521–8.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Park CS, Akhabue E, Bansal M, et al. Dynamic changes in LV radius as a marker of septal configuration for predicting RV failure following LVAD implantation. JACC Cardiovasc Imaging. 2016;10(5):598–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Feldman D, Pamboukian SV, Teuteberg JJ, et al. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32:157–87.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lima B, Rajagopal K, Petersen RP, et al. Marginal cardiac allografts do not have increased primary graft dysfunction in alternate list transplantation. Circulation. 2006;114:I27–32.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Seiler C, Laske A, Gallino A, Turina M, Jenni R. Echocardiographic evaluation of left ventricular wall motion before and after heart transplantation. J Heart Lung Transplant. 1992;11:867–74.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Goland S, Siegel RJ, Burton K, et al. Changes in left and right ventricular function of donor hearts during the first year after heart transplantation. Heart. 2011;97:1681–6.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Gorcsan J 3rd, Snow FR, Paulsen W, Arrowood JA, Thompson JA, Nixon JV. Echocardiographic profile of the transplanted human heart in clinically well recipients. J Heart Lung Transplant. 1992;11:80–9.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Valantine HA, Appleton CP, Hatle LK, et al. A hemodynamic and Doppler echocardiographic study of ventricular function in long-term cardiac allograft recipients. Etiology and prognosis of restrictive-constrictive physiology. Circulation. 1989;79:66–75.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Stehlik J, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: twenty-seventh official adult heart transplant report--2010. J Heart Lung Transplant. 2010;29:1089–103.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Leeman M, Van Cutsem M, Vachiery JL, Antoine M, Leclerc JL. Determinants of right ventricular failure after heart transplantation. Acta Cardiol. 1996;51:441–9.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Sun JP, Abdalla IA, Asher CR, et al. Non-invasive evaluation of orthotopic heart transplant rejection by echocardiography. J Heart Lung Transplant. 2005;24:160–5.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Sagar KB, Hastillo A, Wolfgang TC, Lower RR, Hess ML. Left ventricular mass by M-mode echocardiography in cardiac transplant patients with acute rejection. Circulation. 1981;64:II217–20.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Valantine HA, Yeoh TK, Gibbons R, et al. Sensitivity and specificity of diastolic indexes for rejection surveillance: temporal correlation with endomyocardial biopsy. J Heart Lung Transplant. 1991;10:757–65.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Dandel M, Hummel M, Muller J, et al. Reliability of tissue Doppler wall motion monitoring after heart transplantation for replacement of invasive routine screenings by optimally timed cardiac biopsies and catheterizations. Circulation. 2001;104:I184–91.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Puleo JA, Aranda JM, Weston MW, et al. Noninvasive detection of allograft rejection in heart transplant recipients by use of Doppler tissue imaging. J Heart Lung Transplant. 1998;17:176–84.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Mankad S, Murali S, Kormos RL, Mandarino WA, Gorcsan J 3rd. Evaluation of the potential role of color-coded tissue Doppler echocardiography in the detection of allograft rejection in heart transplant recipients. Am Heart J. 1999;138:721–30.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Haddad F, Fisher P, Pham M, et al. Right ventricular dysfunction predicts poor outcome following hemodynamically compromising rejection. J Heart Lung Transplant. 2009;28:312–9.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Ciliberto GR, Anjos MC, Gronda E, et al. Significance of pericardial effusion after heart transplantation. Am J Cardiol. 1995;76:297–300.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Sarvari SI, Gjesdal O, Gude E, et al. Early postoperative left ventricular function by echocardiographic strain is a predictor of 1-year mortality in heart transplant recipients. J Am Soc Echocardiogr. 2012;25:1007–14.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Kato TS, Oda N, Hashimura K, et al. Strain rate imaging would predict sub-clinical acute rejection in heart transplant recipients. Eur J Cardiothorac Surg. 2010;37:1104–10.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Marciniak A, Eroglu E, Marciniak M, et al. The potential clinical role of ultrasonic strain and strain rate imaging in diagnosing acute rejection after heart transplantation. Eur J Echocardiogr. 2007;8:213–21.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Roshanali F, Mandegar MH, Bagheri J, et al. Echo rejection score: new echocardiographic approach to diagnosis of heart transplant rejection. Eur J Cardiothorac Surg. 2010;38:176–80.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Eleid MF, Caracciolo G, Cho EJ, et al. Natural history of left ventricular mechanics in transplanted hearts relationships with clinical variables and genetic expression profiles of allograft rejection. JACC Cardiovasc Imaging. 2010;3:989–1000.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Derumeaux G, Redonnet M, Mouton-Schleifer D, VACOMED Research Group, et al. Dobutamine stress echocardiography in orthotopic heart transplant recipients. J Am Coll Cardiol. 1995;25:1665–72.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Spes CH, Mudra H, Schnaack SD, et al. Dobutamine stress echocardiography for noninvasive diagnosis of cardiac allograft vasculopathy: a comparison with angiography and intravascular ultrasound. Am J Cardiol. 1996;78:168–74.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Spes CH, Klauss V, Mudra H, et al. Diagnostic and prognostic value of serial dobutamine stress echocardiography for noninvasive assessment of cardiac allograft vasculopathy: a comparison with coronary angiography and intravascular ultrasound. Circulation. 1999;100:509–15.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Eroglu E, D’Hooge J, Sutherland GR, et al. Quantitative dobutamine stress echocardiography for the early detection of cardiac allograft vasculopathy in heart transplant recipients. Heart. 2008;94:e3.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Rodrigues AC, Bacal F, Medeiros CC, et al. Noninvasive detection of coronary allograft vasculopathy by myocardial contrast echocardiography. J Am Soc Echocardiogr. 2005;18:116–21.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Hacker M, Hoyer HX, Uebleis C, et al. Quantitative assessment of cardiac allograft vasculopathy by real-time myocardial contrast echocardiography: a comparison with conventional echocardiographic analyses and [Tc99m]-sestamibi SPECT. Eur J Echocardiogr. 2008;9:494–500.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Bacal F, Moreira L, Souza G, et al. Dobutamine stress echocardiography predicts cardiac events or death in asymptomatic patients long-term after heart transplantation: 4-year prospective evaluation. J Heart Lung Transplant. 2004;23:1238–44.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Wang TJ, Evans JC, Benjamin EJ, Levy D, LeRoy EC, Vasan RS. Natural history of asymptomatic left ventricular systolic dysfunction in the community. Circulation. 2003;108:977–82.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Seraphim A, Paschou SA, Grapsa J, Nihoyannopoulos P. Pocket-sized echocardiography devices: one stop shop service? J Cardiovasc Ultrasound. 2016;24:1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Senior R, Galasko G, McMurray JV, Mayet J. Screening for left ventricular dysfunction in the community: role of hand held echocardiography and brain natriuretic peptides. Heart. 2003;89(Suppl 3):iii24–8.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Prinz C, Voigt JU. Diagnostic accuracy of a hand-held ultrasound scanner in routine patients referred for echocardiography. J Am Soc Echocardiogr. 2011;24:111–6.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Fukuda S, Shimada K, Kawasaki T, et al. Pocket-sized transthoracic echocardiography device for the measurement of cardiac chamber size and function. Circ J. 2009;73(6):1092.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Sengupta PP, Huang YM, Bansal M, et al. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ Cardiovasc Imaging. 2016;9:e004330.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol. 2016;68:2287–95.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Bansal M, Mehrotra R, Kasliwal RR. Loss of left ventricular torsion as the predominant mechanism of left ventricular systolic dysfunction in a patient with tubercular cardiomyopathy. Echocardiography. 2012;29:E221–5.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Duarte R, Fernandez G. Assessment of left ventricular diastolic function by MR: why, how and when. Insights Imaging. 2010;1:183–92.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Manish Bansal
    • 1
  • Partho P. Sengupta
    • 2
    Email author
  • Bijoy K. Khandheria
    • 3
    • 4
    • 5
  1. 1.Medanta – The MedicityGurgaonIndia
  2. 2.Section of CardiologyWest Virginia University Health Sciences CenterMorgantownUSA
  3. 3.University of Wisconsin School of HealthMilwaukeeUSA
  4. 4.Echocardiography, Aurora Health CareMilwaukeeUSA
  5. 5.Global HealthMilwaukeeUSA

Personalised recommendations