Skip to main content

Nuclear Pore Complex in Genome Organization and Gene Expression in Yeast

  • Chapter
  • First Online:
Nuclear Pore Complexes in Genome Organization, Function and Maintenance

Abstract

The nuclear pore complexes (NPCs) are large, evolutionarily conserved multiprotein channels embedded in the nuclear envelope of all eukaryotes cells. NPCs mediate macromolecular import and export from the nucleoplasm and cytoplasm by an active signal-dependent process. Recent research indicates that the NPCs play many additional roles in gene function and spatial organization of the genome. This chapter highlights our current understanding of NPC in genome-related functions in budding yeast. In yeast, Nups physically interact with a large number of highly expressed genes and active inducible genes. The repositioning of inducible genes to the NPCs leads to stronger expression and is regulated through multiple regulatory strategies including cell cycle regulated phosphorylation of Nup1. Many inactive or poised genes also interact with Nups. The interaction of recently repressed GAL1 and INO1 with the NPC is necessary for transcriptional memory. Retention at the NPC for these genes lead to an altered chromatin structure that primes them for rapid transcriptional reactivation. Thus, interactions with the NPC influences the spatial organization of the genome and impacts transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed S, Brickner DG, Light WH et al (2010) DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery. Nat Cell Biol 12(2):111–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aitchison JD, Rout MP (2012) The yeast nuclear pore complex and transport through it. Genetics 190(3):855–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alber F, Dokudovskaya S, Veenhoff LM et al (2007) The molecular architecture of the nuclear pore complex. Nature 450(7170):695–701

    Article  CAS  PubMed  Google Scholar 

  • Albert I, Mavrich TN, Tomsho LP et al (2007) Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446(7135):572–576

    Article  CAS  PubMed  Google Scholar 

  • Andersen JS, Lam YW, Leung AK et al (2005) Nucleolar proteome dynamics. Nature 433(7021):77–83

    Article  CAS  PubMed  Google Scholar 

  • Arndt K, Fink GR (1986) GCN4 protein, a positive transcription factor in yeast, binds general control promoters at all 5’ TGACTC 3’ sequences. Proc Natl Acad Sci U S A 83(22):8516–8520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartlett J, Blagojevic J, Carter D et al (2006) Specialized transcription factories. Biochem Soc Symp 73:67–75

    Article  CAS  Google Scholar 

  • Belmont AS, Zhai Y, Thilenius A (1993) Lamin B distribution and association with peripheral chromatin revealed by optical sectioning and electron microscopy tomography. J Cell Biol 123(6 Pt 2):1671–1685

    Article  CAS  PubMed  Google Scholar 

  • Bhaumik SR (2011) Distinct regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID. Biochim Biophys Acta 1809(2):97–108

    Article  CAS  PubMed  Google Scholar 

  • Blobel G (1985) Gene gating: a hypothesis. Proc Natl Acad Sci U S A 82(24):8527–8529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boisvert FM, van Koningsbruggen S, Navascues J et al (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8(7):574–585

    Article  CAS  PubMed  Google Scholar 

  • Botstein D, Fink GR (2011) Yeast: an experimental organism for 21st century biology. Genetics 189(3):695–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brickner DG, Ahmed S, Meldi L et al (2012) Transcription factor binding to a DNA zip code controls interchromosomal clustering at the nuclear periphery. Dev Cell 22(6):1234–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brickner DG, Brickner JH (2010) Cdk phosphorylation of a nucleoporin controls localization of active genes through the cell cycle. Mol Biol Cell 21(19):3421–3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brickner DG, Brickner JH (2012) Interchromosomal clustering of active genes at the nuclear pore complex. Nucleus 3(6):487–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Brickner DG, Cajigas I, Fondufe-Mittendorf Y et al (2007) H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol 5(4):e81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brickner DG, Coukos R, Brickner JH (2015) INO1 transcriptional memory leads to DNA zip code-dependent interchromosomal clustering. Microb Cell 2(12):481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brickner DG, Sood V, Tutucci E et al (2016). Subnuclear positioning and interchromosomal clustering of the GAL1-10 locus are controlled by separable, interdependent mechanisms. Mol Biol Cell 27:2980–2993

    Google Scholar 

  • Brickner JH (2009) Transcriptional memory at the nuclear periphery. Curr Opin Cell Biol 21(1):127–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brickner JH, Walter P (2004) Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol 2(11):e342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brohawn SG, Leksa NC, Spear ED et al (2008) Structural evidence for common ancestry of the nuclear pore complex and vesicle coats. Science 322(5906):1369–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown CR, Kennedy CJ, Delmar VA et al (2008) Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev 22(5):627–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabal GG, Genovesio A, Rodriguez-Navarro S et al (2006) SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441(7094):770–773

    Article  CAS  PubMed  Google Scholar 

  • Capelson M, Liang Y, Schulte R et al (2010) Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140(3):372–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casolari JM, Brown CR, Drubin DA et al (2005) Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. Genes Dev 19(10):1188–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casolari JM, Brown CR, Komili S et al (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117(4):427–439

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Gartenberg MR (2014) Coordination of tRNA transcription with export at nuclear pore complexes in budding yeast. Genes Dev 28(9):959–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cremer T, Cremer M, Dietzel S, Muller S et al (2006) Chromosome territories--a functional nuclear landscape. Curr Opin Cell Biol 18(3):307–316

    Article  CAS  PubMed  Google Scholar 

  • Cronshaw JM, Krutchinsky AN, Zhang W et al (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158(5):915–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Urso A, Brickner JH (2014) Mechanisms of epigenetic memory. Trends Genet 30(6):230–236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Urso A, Takahashi YH, Xiong B et al (2016). Set1/COMPASS and Mediator are repurposed to promote epigenetic transcriptional memory. Elife 5:e16691

    Google Scholar 

  • Defossez PA, Prusty R, Kaeberlein M et al (1999) Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol Cell 3(4):447–455

    Article  CAS  PubMed  Google Scholar 

  • Denoth-Lippuner A, Krzyzanowski MK, Stober C et al (2014). Role of SAGA in the asymmetric segregation of DNA circles during yeast ageing. Elife 3

    Google Scholar 

  • Denoth Lippuner A, Julou T, Barral Y (2014) Budding yeast as a model organism to study the effects of age. FEMS Microbiol Rev 38(2):300–325

    Article  CAS  PubMed  Google Scholar 

  • Devos D, Dokudovskaya S, Alber F et al (2004) Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLoS Biol 2(12):e380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dieppois G, Iglesias N, Stutz F (2006) Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes. Mol Cell Biol 26(21):7858–7870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dilworth DJ, Suprapto A, Padovan JC et al (2001) Nup2p dynamically associates with the distal regions of the yeast nuclear pore complex. J Cell Biol 153(7):1465–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dilworth DJ, Tackett AJ, Rogers RS et al (2005) The mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control. J Cell Biol 171(6):955–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan Z, Andronescu M, Schutz K et al (2010) A three-dimensional model of the yeast genome. Nature 465(7296):363–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dultz E, Tjong H, Weider E et al (2016) Global reorganization of budding yeast chromosome conformation in different physiological conditions. J Cell Biol 212(3):321–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer T, Strasser K, Racz A et al (2002) The mRNA export machinery requires the novel Sac3p-Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores. Embo J 21(21):5843–5852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graves JA, Henry SA (2000) Regulation of the yeast INO1 gene. The products of the INO2, INO4 and OPI1 regulatory genes are not required for repression in response to inositol. Genetics 154(4):1485–1495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Green EM, Jiang Y, Joyner R et al (2012) A negative feedback loop at the nuclear periphery regulates GAL gene expression. Mol Biol Cell 23(7):1367–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman E, Medalia O, Zwerger M (2012) Functional architecture of the nuclear pore complex. Annu Rev Biophys 41:557–584

    Article  CAS  PubMed  Google Scholar 

  • Gruenbaum Y, Foisner R (2015) Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem 84:131–164

    Article  CAS  PubMed  Google Scholar 

  • Guan Q, Haroon S, Bravo DG et al (2012) Cellular memory of acquired stress resistance in Saccharomyces cerevisiae. Genetics 192(2):495–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guet D, Burns LT, Maji S et al (2015) Combining Spinach-tagged RNA and gene localization to image gene expression in live yeast. Nat Commun 6:8882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagen DC, McCaffrey G, Sprague Jr. GF (1991) Pheromone response elements are necessary and sufficient for basal and pheromone-induced transcription of the FUS1 gene of Saccharomyces cerevisiae. Mol Cell Biol 11(6):2952–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halley JE, Kaplan T, Wang AY et al (2010) Roles for H2A.Z and its acetylation in GAL1 transcription and gene induction, but not GAL1-transcriptional memory. PLoS Biol 8(6):e1000401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hediger F, Neumann FR, Van Houwe G et al (2002) Live imaging of telomeres: yKu and Sir proteins define redundant telomere-anchoring pathways in yeast. Curr Biol 12(24):2076–2089

    Article  CAS  PubMed  Google Scholar 

  • Hoelz A, Debler EW, Blobel G (2011) The structure of the nuclear pore complex. Annu Rev Biochem 80:613–643

    Article  CAS  PubMed  Google Scholar 

  • Ishii K, Arib G, Lin C et al (2002) Chromatin boundaries in budding yeast: the nuclear pore connection. Cell 109(5):551–562

    Article  CAS  PubMed  Google Scholar 

  • Kalverda B, Pickersgill H, Shloma VV et al (2010) Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140(3):360–371

    Article  CAS  PubMed  Google Scholar 

  • Kampmann M, Blobel G (2009) Three-dimensional structure and flexibility of a membrane-coating module of the nuclear pore complex. Nat Struct Mol Biol 16(7):782–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T, Buratowski S (2009) Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5’ transcribed regions. Cell 137(2):259–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohler A, Hurt E (2007) Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol 8(10):761–773

    Article  PubMed  CAS  Google Scholar 

  • Kundu S, Horn PJ, Peterson CL (2007) SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev 21(8):997–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Light WH, Brickner DG, Brand VR et al (2010) Interaction of a DNA zip code with the nuclear pore complex promotes H2A.Z incorporation and INO1 transcriptional memory. Mol Cell 40(1):112–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Light WH, Freaney J, Sood V et al (2013) A conserved role for human Nup98 in altering chromatin structure and promoting epigenetic transcriptional memory. PLoS Biol 11(3):e1001524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luperchio TR, Wong X, Reddy KL (2014) Genome regulation at the peripheral zone: lamina associated domains in development and disease. Curr Opin Genet Dev 25:50–61

    Article  CAS  PubMed  Google Scholar 

  • Luthra R, Kerr SC, Harreman MT et al (2007) Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J Biol Chem 282(5):3042–3049

    Article  CAS  PubMed  Google Scholar 

  • Makhnevych T, Lusk CP, Anderson AM et al (2003) Cell cycle regulated transport controlled by alterations in the nuclear pore complex. Cell 115(7):813–823

    Article  CAS  PubMed  Google Scholar 

  • Marshall WF, Dernburg AF, Harmon B et al (1996) Specific interactions of chromatin with the nuclear envelope: positional determination within the nucleus in Drosophila melanogaster. Mol Biol Cell 7(5):825–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBratney S, Winey M (2002) Mutant membrane protein of the budding yeast spindle pole body is targeted to the endoplasmic reticulum degradation pathway. Genetics 162(2):567–578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meldi L, Brickner JH (2011) Compartmentalization of the nucleus. Trends Cell Biol 21(12):701–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meneghini MD, Wu M, Madhani HD (2003) Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112(5):725–736

    Article  CAS  PubMed  Google Scholar 

  • Neumann N, Lundin D, Poole AM (2010) Comparative genomic evidence for a complete nuclear pore complex in the last eukaryotic common ancestor. PLoS One 5(10):e13241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okamura M, Inose H, Masuda S (2015) RNA Export through the NPC in Eukaryotes. Genes (Basel) 6(1):124–149

    Article  CAS  Google Scholar 

  • Palancade B, Zuccolo M, Loeillet S et al (2005) Pml39, a novel protein of the nuclear periphery required for nuclear retention of improper messenger ribonucleoparticles. Mol Biol Cell 16(11):5258–5268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parada L, Misteli T (2002) Chromosome positioning in the interphase nucleus. Trends Cell Biol 12(9):425–432

    Article  CAS  PubMed  Google Scholar 

  • Peric-Hupkes D, Meuleman W, Pagie L et al (2010) Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell 38(4):603–613

    Article  CAS  PubMed  Google Scholar 

  • Pombo A, Dillon N (2015) Three-dimensional genome architecture: players and mechanisms. Nat Rev Mol Cell Biol 16(4):245–257

    Article  CAS  PubMed  Google Scholar 

  • Randise-Hinchliff C, Brickner JH (2016). Transcription factors dynamically control the spatial organization of the yeast genome. Nucleus: 0

    Google Scholar 

  • Randise-Hinchliff C, Coukos R, Sood V et al (2016) Strategies to regulate transcription factor-mediated gene positioning and interchromosomal clustering at the nuclear periphery. J Cell Biol 212(6):633–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regot S, de Nadal E, Rodriguez-Navarro S et al (2013) The Hog1 stress-activated protein kinase targets nucleoporins to control mRNA export upon stress. J Biol Chem 288(24):17384–17398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichelt R, Holzenburg A, Buhle Jr. EL et al (1990) Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J Cell Biol 110(4):883–894

    Article  CAS  PubMed  Google Scholar 

  • Robertson LS, Fink GR (1998) The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci U S A 95(23):13783–13787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Navarro S, Fischer T, Luo MJ et al (2004) Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116(1):75–86

    Article  CAS  PubMed  Google Scholar 

  • Rohner S, Kalck V, Wang X et al (2013) Promoter- and RNA polymerase II-dependent hsp-16 gene association with nuclear pores in Caenorhabditis elegans. J Cell Biol 200(5):589–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rout MP, Blobel G (1993) Isolation of the yeast nuclear pore complex. J Cell Biol 123(4):771–783

    Article  CAS  PubMed  Google Scholar 

  • Sarma NJ, Buford TD, Haley T et al (2011) The nuclear pore complex mediates binding of the Mig1 repressor to target promoters. PLoS One 6(11):e27117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarma NJ, Haley TM, Barbara KE et al (2007) Glucose-responsive regulators of gene expression in Saccharomyces cerevisiae function at the nuclear periphery via a reverse recruitment mechanism. Genetics 175(3):1127–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid M, Arib G, Laemmli C et al (2006) Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol Cell 21(3):379–391

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Wood A, Lee JS et al (2005) Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol Cell 19(6):849–856

    Article  CAS  PubMed  Google Scholar 

  • Schneider M, Hellerschmied D, Schubert T et al (2015) The nuclear pore-associated TREX-2 complex employs mediator to regulate gene expression. Cell 162(5):1016–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sexton T, Cavalli G (2015) The role of chromosome domains in shaping the functional genome. Cell 160(6):1049–1059

    Article  CAS  PubMed  Google Scholar 

  • Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles--a cause of aging in yeast. Cell 91(7):1033–1042

    Article  CAS  PubMed  Google Scholar 

  • Smith C, Lari A, Derrer CP et al (2015) In vivo single-particle imaging of nuclear mRNA export in budding yeast demonstrates an essential role for Mex67p. J Cell Biol 211(6):1121–1130

    Article  PubMed  PubMed Central  Google Scholar 

  • Song W, Carlson M (1998) Srb/mediator proteins interact functionally and physically with transcriptional repressor Sfl1. EMBO J 17(19):5757–5765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steglich B, Sazer S, Ekwall K (2013) Transcriptional regulation at the yeast nuclear envelope. Nucleus 4(5):379–389

    Article  PubMed  PubMed Central  Google Scholar 

  • Taddei A, Gasser SM (2012) Structure and function in the budding yeast nucleus. Genetics 192(1):107–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taddei A, Hediger F, Neumann FR et al (2004) Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. Embo J 23(6):1301–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taddei A, Schober H, Gasser SM (2010) The budding yeast nucleus. Cold Spring Harb Perspect Biol 2(8):a000612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taddei A, Van Houwe G, Hediger F et al (2006) Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441(7094):774–778

    Article  CAS  PubMed  Google Scholar 

  • Takahashi YH, Lee JS, Swanson SK et al (2009) Regulation of H3K4 trimethylation via Cps40 (Spp1) of COMPASS is monoubiquitination independent: implication for a Phe/Tyr switch by the catalytic domain of Set1. Mol Cell Biol 29(13):3478–3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan-Wong SM, Wijayatilake HD, Proudfoot NJ (2009) Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev 23(22):2610–2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Texari L, Dieppois G, Vinciguerra P et al (2013) The nuclear pore regulates GAL1 gene transcription by controlling the localization of the SUMO protease Ulp1. Mol Cell 51(6):807–818

    Article  CAS  PubMed  Google Scholar 

  • Therizols P, Fairhead C, Cabal GG et al (2006) Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region. J Cell Biol 172(2):189–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran EJ, Wente SR (2006) Dynamic nuclear pore complexes: life on the edge. Cell 125(6):1041–1053

    Article  CAS  PubMed  Google Scholar 

  • Van de Vosse DW, Wan Y, Lapetina DL et al (2013) A role for the nucleoporin Nup170p in chromatin structure and gene silencing. Cell 152(5):969–983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wan Y, Saleem RA, Ratushny AV et al (2009) Role of the histone variant H2A.Z/Htz1p in TBP recruitment, chromatin dynamics, and regulated expression of oleate-responsive genes. Mol Cell Biol 29(9):2346–2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Matunis MJ, Kraemer D et al (1995) Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J Biol Chem 270(23):14209–14213

    Article  CAS  PubMed  Google Scholar 

  • Zacharioudakis I, Gligoris T, Tzamarias D (2007) A yeast catabolic enzyme controls transcriptional memory. Curr Biol 17(23):2041–2046

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Roberts DN, Cairns BR (2005) Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123(2):219–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Wu CY, Blobel G (2004) Mlp-dependent anchorage and stabilization of a desumoylating enzyme is required to prevent clonal lethality. J Cell Biol 167(4):605–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer C, Fabre E (2011) Principles of chromosomal organization: lessons from yeast. J Cell Biol 192(5):723–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason H. Brickner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Randise-Hinchliff, C., Brickner, J.H. (2018). Nuclear Pore Complex in Genome Organization and Gene Expression in Yeast. In: D’Angelo, M. (eds) Nuclear Pore Complexes in Genome Organization, Function and Maintenance. Springer, Cham. https://doi.org/10.1007/978-3-319-71614-5_4

Download citation

Publish with us

Policies and ethics