Abstract
This paper presents a penalty approach for globally solving nonsmooth and nonconvex mixed-integer nonlinear programming (MINLP) problems. Both integrality constraints and general nonlinear constraints are handled separately by hyperbolic tangent penalty functions. Proximity from an iterate to a feasible promising solution is enforced by an oracle penalty term. The numerical experiments show that the proposed oracle-based penalty approach is effective in reaching the solutions of the MINLP problems and is competitive when compared with other strategies.
Keywords
- MINLP
- Penalty function
- DIRECT
- Oracle
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
O. Exler, T. Lehmann, K. Schittkowski, A comparative study of SQP-type algorithms for nonlinear and nonconvex mixed-integer optimization. Math. Program. Comput. 4(4), 383–412 (2012)
S. Burer, A.N. Letchford, Non-convex mixed-integer nonlinear programming: a survey. Surv. Oper. Res. Manag. Sci. 17(2), 97–106 (2012)
S. Lee, I.E. Grossmann, A global optimization algorithm for nonconvex generalized disjunctive programming and applications to process systems. Comput. Chem. Eng. 25(11), 1675–1697 (2001)
H.S. Ryoo, N.V. Sahinidis, Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput. Chem. Eng. 19(5), 551–566 (1995)
C.S. Adjiman, I.P. Androulakis, C.A. Floudas, Global optimization of mixed-integer nonlinear problems. AIChE J. 46(9), 1769–1797 (2000)
V.K. Srivastava, A. Fahim, An optimization method for solving mixed discrete-continuous programming problems. Comput. Math. Appl. 53(10), 1481–1491 (2007)
L. Liberti, G. Nannicini, N. Mladenović, A good recipe for solving MINLPs, in Matheuristics: Hybridizing Metaheuristics and Mathematical Programming, vol. 10, ed. by V. Maniezzo, T. Stützle, S. Voß (Springer, US, 2010), pp. 231–244
G. Nannicini, P. Belotti, Rounding-based heuristics for nonconvex MINLPs. Math. Program. Comput. 4(1), 1–31 (2012)
C. D’Ambrosio, A. Frangioni, L. Liberti, A. Lodi, A storm of feasibility pumps for nonconvex MINLP. Math. Program. 136(2), 375–402 (2012)
G. Liuzzi, S. Lucidi, F. Rinaldi, Derivative-free methods for bound constrained mixed-integer optimization. Comput. Optim. Appl. 53(2), 505–526 (2012)
M.F.P. Costa, A.M.A.C. Rocha, R.B. Francisco, E.M.G.P. Fernandes, Firefly penalty-based algorithm for bound constrained mixed-integer nonlinear programming. Optimization 65(5), 1085–1104 (2016)
S. Lucidi, F. Rinaldi, Exact penalty functions for nonlinear integer programming problems. J. Optim. Theory Appl. 145(3), 479–488 (2010)
S. Lucidi, F. Rinaldi, An exact penalty global optimization approach for mixed-integer programming problems. Optim. Lett. 7(2), 297–307 (2013)
Y.-C. Lin, K.-S. Hwang, F.-S. Wang, A mixed-coding scheme of evolutionary algorithms to solve mixed-integer nonlinear programming problems. Comput. Math. Appl. 47(8–9), 1295–1307 (2004)
L. Yiqing, Y. Xigang, L. Yongjian, An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints. Comput. Chem. Eng. 31(3), 153–162 (2007)
K. Deep, K.P. Singh, M. L. Kansal, C. Mohan, A real coded genetic algorithm for solving integer and mixed integer optimization problems. Appl. Math. Comput. 212(2), 505–518 (2009)
A. Hedar, A. Fahim, Filter-based genetic algorithm for mixed variable programming. Numer. Algebr. Control Optim. 1(1), 99–116 (2011)
F.P. Fernandes, M.F.P. Costa, E.M.G.P. Fernandes, Branch and bound based coordinate search filter algorithm for nonsmooth nonconvex mixed-integer nonlinear programming problems, in Computational Science and Its Applications – ICCSA 2014, Part II, LNCS, vol. 8580, ed. by B. Murgante, S. Misra, A.M.A.C. Rocha, C. Torre, J.G. Rocha, M.I. Falcão, D. Taniar, B.O. Apduhan, O. Gervasi (Springer, Berlin, 2014), pp. 140–153
M. Schlüter, J.A. Egea, J.R. Banga, Extended ant colony optimization for non-convex mixed integer nonlinear programming. Comput. Oper. Res. 36(7), 2217–2229 (2009)
M.F.P. Costa, A.M.A.C. Rocha, R.B. Francisco, E.M.G.P. Fernandes, Extension of the firefly algorithm and preference rules for solving MINLP problems, in International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2016), AIP. Conf. Proc. 1863, 270003-1–270003-4 (2017)
P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, A. Mahajan, Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131 (2013)
F. Boukouvala, R. Misener, C.A. Floudas, Global optimization advances in mixed-integer nonlinear programming, MINLP, and constrained derivative-free optimization, CDFO. Eur. J. Oper. Res. 252(3), 701–727 (2016)
M.R. Bussieck, S. Vigerske, MINLP solver software, in Wiley Encyclopedia of Operations Research and Management Science, ed. by J.J. Cochran, L.A. Cox, P. Keskinocak, J.P. Kharoufeh, J.C. Smith (Wiley, New York, 2011)
A.M.A.C. Rocha, M.F.P. Costa, E.M.G.P. Fernandes, Solving MINLP problems by a penalty framework, in Proceedings of XIII Global Optimization Workshop, ed. by A.M. Rocha, M.F. Costa, E. Fernandes, (2016), pp. 97–100
D.R. Jones, C.D. Perttunen, B.E. Stuckman, Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)
M. Schlüter, M. Gerdts, The oracle penalty method. J. Glob. Optim. 47(2), 293–325 (2010)
D.E. Finkel, DIRECT Optimization Algorithm User Guide, Center for Research in Scientific Computation. (CRSC-TR03-11, North Carolina State University, Raleigh, NC 27695-8205, March 2003)
C.A. Floudas, P.M. Pardalos, C. Adjiman, W.R. Esposito, Z.H. Gümüs, S.T. Harding, J.L. Klepeis, C.A. Meyer, C.A. Schweiger, Handbook of Test Problems in Local and Global Optimization, Nonconvex Optimization and its Applications (Springer Science & Business Media, Dordrecht, 1999)
Acknowledgements
The authors would like to thank two anonymous referees for their valuable comments and suggestions to improve the paper.
This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundação para a Ciência e Tecnologia, within the projects UID/CEC/00319/2013 and UID/MAT/00013/2013.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Costa, M.F.P., Rocha, A.M.A.C., Fernandes, E.M.G.P. (2018). A Penalty Approach for Solving Nonsmooth and Nonconvex MINLP Problems. In: Vaz, A., Almeida, J., Oliveira, J., Pinto, A. (eds) Operational Research. APDIO 2017. Springer Proceedings in Mathematics & Statistics, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-71583-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-71583-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-71582-7
Online ISBN: 978-3-319-71583-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)