Advertisement

Reference Points in TOPSIS Methods for Group Decision Makers & Interval Data: Study and Comparison

  • Chergui Zhor
  • Abbas Moncef
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 223)

Abstract

In this paper, two new extensions of TOPSIS method for Group decision makers and Interval data are presented. In particular, the behavior of some past contributions when using Nadir point at the place of anti ideal point is studied. Otherwise, through simulation studies and simulation, which are mainly based upon smart random instances, a comparison between four algorithms is carried out, its purpose is to show the most effective one.

Keywords

Group decision makers Interval data Pareto optimal area Reference points TOPSIS methods Normalization forms 

References

  1. 1.
    V. Belton, T. Stewart, Multiple Criteria Decision Analysis: An Integrated Approach (Springer Science & Business Media, Berlin, 2002)Google Scholar
  2. 2.
    D. Bouyssou, B. Roy, Aide à la décision multicritère : méthodes et cas. Economica (1993)Google Scholar
  3. 3.
    J.P. Brans, B. Mareschal. PROMETHEE-Gaia : une méthodologie d’aide à la décision en présence de critères multiples. Ellipes (2001)Google Scholar
  4. 4.
    H. Deng, C.H. Yeh, R.J. Willis, Inter-company comparison using modified TOPSIS with objective weights. Comput. Oper. Res. 27, 963–973 (2000)Google Scholar
  5. 5.
    J.S. Dyer, Remarks on the analytic hierarchy process. Manag. Sci. 36, 249–258 (1990a)Google Scholar
  6. 6.
    J.S. Dyer, A clarification of remarks on the analytic hierarchy process. Manag. Sci. 36, 274–275 (1990b)Google Scholar
  7. 7.
    C.L. Hwang, K. Yoon, Multiple Attribute Decision Making: Methods and Applications (Springer, New York, 1981)CrossRefMATHGoogle Scholar
  8. 8.
    G.R. Jahanshahloo, F.H. Lofti, M. Izadikhah, An algorithmic method to extend topsis for decision making problems with interval data. Appl. Math. Comput. 175, 1375–1384 (2006)MATHGoogle Scholar
  9. 9.
    W.D. Keyser, P. Peeters, A note on the use of promethee mcdm methods. Eur. J. Oper. Res. 0, 457–461 (1996)CrossRefMATHGoogle Scholar
  10. 10.
    S. Opricovic, G.-H. Tzeng, Compromise solution by mcdm methods: A comparative analysis of vikor and topsis. Eur. J. Oper. Res. 156, 445–455 (2004)CrossRefMATHGoogle Scholar
  11. 11.
    E. Roszkowska, Multi-criteria decision making models by applying the topsis method to crisp and interval data. Mult. Criteria Decision Mak. 6, 200–230 (2011)Google Scholar
  12. 12.
    E. Roszkowska, T. Wachowicz, Negotiation support with fuzzy topsis. Group Decision Negot (2012)Google Scholar
  13. 13.
    E. Roszkowska, T. Wachowicz, Application of fuzzy topsis to scoring the negotiation offers in ill-structured negotiation problems. Eur. J. Oper. Res. 242(3), 920–932 (2015)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    H.S. Shih, H.J. Shyur, E.S. Lee, An extension of topsis for group decision making. Math. Comput. Model. 45, 801–813 (2007)CrossRefMATHGoogle Scholar
  15. 15.
    R. Steuer, Multiple Criteria Optimization : Theory, Computation and Applications (Wiley, New-York, 1985)Google Scholar
  16. 16.
    E. Triantaphyllou, MCDM Decision Making Methods: A Comparative Study. Ellipses (1989)Google Scholar
  17. 17.
    E. Triantaphyllou, MCDM Decision Making Methods: A Comparative Study (Kluwer Academic Publishers, Dordrecht, 2000)MATHGoogle Scholar
  18. 18.
    E.K. Zavadskas, Z. Turskis, J. Tamosaitiene, Construction risk assessment of small scale objects by applying the topsis method with attributes values determined at intervals. in The 8th International Conference Reliability and Statistic in Transportation and Communication (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Dpt. MechanicsENSTAlgeria
  2. 2.Dpt. MathematicsUSTHBAlgeria

Personalised recommendations