Waste Collection Planning Based on Real-Time Information

  • Tânia Rodrigues Pereira Ramos
  • Carolina Soares de Morais
  • Ana Paula Barbosa-Póvoa
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 223)

Abstract

This paper studies the definition of dynamic routes regarding the waste collection problem. Based on access to real-time information, provided by sensors located at waste bin containers, a Vehicle Routing Problem with Profits (VRPP) solution approach is developed. This aims for the maximization of waste collected while minimizing the total distance travelled, resulting in a maximization of profit. Different scenarios are studied, based on real data. The conclusions clearly show that the usage of real-time information on containers fill-levels, coupled with an optimization approach to define dynamic routes potentially increases the profit of waste management companies.

Keywords

Real-time information Sensors Waste collection Vehicle routing problem with profits 

References

  1. 1.
    D. Aksen, O. Kaya, F.S. Salman, Y. Akça, Selective and periodic inventory routing problem for waste vegetable oil collection. Opt. Lett. 6(6), 1063–1080 (2012)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    M. Allahviranloo, J.Y.J. Chow, W.W. Recker, Selective vehicle routing problems under uncertainty without recourse. Transp. Res. Part E: Logist. Transp. Rev. 62, 68–88 (2014)CrossRefGoogle Scholar
  3. 3.
    N. Aras, D. Aksen, M.T. Tekin, Selective multi-depot vehicle routing problem with pricing. Transp. Res. Part C: Emerg. Technol. 19(5), 866–884 (2011)CrossRefGoogle Scholar
  4. 4.
    C. Archetti, A. Hertz, M.G. Speranza, Metaheuristics for the team orienteering problem. J. Heuristics 13(1), 49–76 (2007)CrossRefGoogle Scholar
  5. 5.
    C. Archetti, M.G. Speranza, D. Vigo, Vehicle routing problems with profits 18, 273 (2014)Google Scholar
  6. 6.
    S. Boussier, D. Feillet, M. Gendreau, An exact algorithm for team orienteering problems. 4OR Q. J. Oper. Res. 5(3), 211–230 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    S.E. Butt, T.M. Cavalier, A heuristic for the multiple tour maximum collection problem. Comput. Oper. Res. 21(1), 101–111 (1994)CrossRefMATHGoogle Scholar
  8. 8.
    I.-M. Chao, B.L. Golden, E.A. Wasil, The team orienteering problem. J. Oper. Res. 88(3), 464–474 (1996)CrossRefMATHGoogle Scholar
  9. 9.
    M. Faccio, A. Persona, G. Zanin, Waste collection multi objective model with real time traceability data. Waste Manag. 31(12), 2391–2405 (2011)CrossRefGoogle Scholar
  10. 10.
    D.S. Gonçalves, Tecnologias de informação e comunicação para otimização da recolha de resíduos recicláveis. Master’s thesis, Lisboa: ISCTE (2014)Google Scholar
  11. 11.
    T. Ilhan, S.M.R. Iravani, M.S. Daskin, The orienteering problem with stochastic profits. IIE Trans. 40(4), 406–421 (2008)CrossRefGoogle Scholar
  12. 12.
    L. Ke, C. Archetti, Z. Feng, Ants can solve the team orienteering problem. Comput. Ind. Eng. 54(3), 648–665 (2008)CrossRefGoogle Scholar
  13. 13.
    C.E. Miller, A.W. Tucker, R.A. Zemlin, Integer programming formulation of traveling salesman problems. J. ACM (JACM) 7(4), 326–329 (1960)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    T. Nuortio, J. Kytöjoki, H. Niska, O. Bräysy, Improved route planning and scheduling of waste collection and transport. Expert Syst. Appl. 30(2), 223–232 (2006)CrossRefGoogle Scholar
  15. 15.
    M. Poggi, H. Viana, E. Uchoa, The team orienteering problem: Formulations and branch-cut and price. in OASIcs-OpenAccess Series in Informatics, vol. 14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  16. 16.
    T.R.P. Ramos, M.I. Gomes, A.P. Barbosa-Póvoa, Assessing and improving management practices when planning packaging waste collection systems. Resour. Conserv. Recycl. 85, 116–129 (2014)CrossRefGoogle Scholar
  17. 17.
    F.G. Şahinyazan, B.Y. Kara, M.R. Taner, Selective vehicle routing for a mobile blood donation system. Eur. J. Oper. Res. 245(1), 22–34 (2015)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    R.F.R. Silva, The multi-compartment vehicle routing problem in the collection of recyclable municipal solid waste. Master’s thesis, Lisboa: ISCTE (2016)Google Scholar
  19. 19.
    W. Souffriau, P. Vansteenwegen, G.V. Berghe, D. Van Oudheusden, A path relinking approach for the team orienteering problem. Comput. Oper. Res. 37(11), 1853–1859 (2010)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    C.A. Valle, L.C. Martinez, A.S. Da Cunha, G.R. Mateus, Heuristic and exact algorithms for a min-max selective vehicle routing problem. Comput. Oper. Res. 38(7), 1054–1065 (2011)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    P. Vansteenwegen, W. Souffriau, D. Van Oudheusden, The orienteering problem: a survey. Eur. J. Oper. Res. 209(1), 1–10 (2011)Google Scholar
  22. 22.
    P. Vansteenwegen, D. Van Oudheusden, The mobile tourist guide: an or opportunity. OR Insight 20(3), 21–27 (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Tânia Rodrigues Pereira Ramos
    • 1
  • Carolina Soares de Morais
    • 1
  • Ana Paula Barbosa-Póvoa
    • 1
  1. 1.CEG-IST, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal

Personalised recommendations