A Nucleotide-Level Computational Approach to DNA-Based Materials

Chapter

Abstract

Perhaps the most important feature for the biological role of DNA is its outstanding molecular recognition capability. Beyond its biological importance, this intrinsic selectivity can be exploited for artificial applications, which range from nanotechnology to materials science. Here we provide a short introduction on DNA and on the features that make it attractive as a building block for new materials. Then, we present an overview of the state of the art of DNA modelling, with a strong focus on nucleotide-level coarse-grained models which, thanks to their vast range of applicability, are ideal candidates for the investigation of the phase behaviour of all-DNA materials. Finally, we show how a specific model, oxDNA, has been used to asses the thermodynamics and structural properties of two recently-synthesised DNA-based materials: gels made of DNA nanostars and liquid crystals made of ultra-short DNA duplexes.

Notes

Acknowledgements

Lorenzo Rovigatti thanks Manfredo Di Porcia for providing the data reported in Fig. 3.2.

References

  1. 1.
    Egli M, Saenger W. Principles of nucleic acid structure. Berlin: Springer; 2013.Google Scholar
  2. 2.
    Watson JD, Crick FH, et al. Nature. 1953;171(4356), 737.CrossRefPubMedGoogle Scholar
  3. 3.
    Hoogsteen K. Acta Crystallogr. 1959;12(10):822. https://doi.org/10.1107/S0365110X59002389. http://scripts.iucr.org/cgi-bin/paper?a02658.
  4. 4.
  5. 5.
    Seeman NC. J Theor Biol. 1982;99(2):237. https://doi.org/10.1016/0022-5193(82)90002-9.
  6. 6.
    Seeman NC. Annu Rev Biophys Biomol Struct. 1998;27(1):225.  https://doi.org/10.1146/annurev.biophys.27.1.225.
  7. 7.
    Wollman AJM, Sanchez-Cano C, Carstairs HMJ, Cross RA, Turberfield AJ. Nat Nanotechnol. 2013;9:44.CrossRefPubMedGoogle Scholar
  8. 8.
    Soloveichik D, Seelig G, Winfree E. Proc Natl Acad Sci. 2010;107:5393.  https://doi.org/10.1073/pnas.0909380107.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    He Y, Ye T, Su M, Zhang C, Ribbe AE, Jiang W, Mao C. Nature. 2008;452(7184):198.PubMedGoogle Scholar
  10. 10.
    Winfree E, Liu F, Wenzler LA, Seeman NC, Nature. 1998;394(6693):539.CrossRefPubMedGoogle Scholar
  11. 11.
    Liu D, Park SH, Reif JH, LaBean TH. Proc Natl Acad Sci. 2004;101(3):717.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yin P, Hariadi RF, Sahu S, Choi HM, Park SH, LaBean TH, Reif JH. Science. 2008;321(5890):824.CrossRefPubMedGoogle Scholar
  13. 13.
    Rothemund PWK. Nature. 2006;440(7082):297.Google Scholar
  14. 14.
    Rajendran A, Endo M, Sugiyama H. Angew Chem Int Ed. 2012;51(4):874.  https://doi.org/10.1002/anie.201102113.CrossRefGoogle Scholar
  15. 15.
    Tsukanov R, Tomov TE, Masoud R, Drory H, Plavner N, Liber M, Nir E. J Phys Chem B. 2013;117(40):11932. https://doi.org/10.1021/jp4059214. PMID: 24041226.CrossRefPubMedGoogle Scholar
  16. 16.
    Douglas SM, Bachelet I, Church GM. Science. 2012;335(6070):831.  https://doi.org/10.1126/science.1214081.CrossRefPubMedGoogle Scholar
  17. 17.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoffand JJ, Nature. 1996;382:607. https://doi.org/10.1038/382607a0.CrossRefPubMedGoogle Scholar
  18. 18.
    Seeman NC. Nature. 2003;421(6921):427.Google Scholar
  19. 19.
    Biffi S, Cerbino R, Bomboi F, Paraboschi EM, Asselta R, Sciortino F, Bellini T. Proc Natl Acad Sci. 2013;110(39):15633.  https://doi.org/10.1073/pnas.1304632110.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jones MR, Seeman NC, Mirkin CA, Science. 2015;347(6224):1260901.  https://doi.org/10.1126/science.1260901. http://www.sciencemag.org/content/347/6224/1260901.
  21. 21.
    Maye MM, Kumara MT, Nykypanchuk D, Sherman WB, Gang O. Nat Nanotechnol. 2010;5(2):116.CrossRefPubMedGoogle Scholar
  22. 22.
    Varrato F, Di Michele L, Belushkin M, Dorsaz N, Nathan SH, Eiser E, Foffi G. Proc Natl Acad Sci. 2012.  https://doi.org/10.1073/pnas.1214971109. http://www.pnas.org/content/early/2012/10/31/1214971109.abstract.
  23. 23.
    Di Michele L, Eiser E. Phys Chem Chem Phys. 2013;15(9):3115. https://doi.org/10.1039/C3CP43841D.CrossRefPubMedGoogle Scholar
  24. 24.
    Winfree E, Liu F, Wenzler LA, Seeman NC. Nature. 1998;394(6693):539.CrossRefPubMedGoogle Scholar
  25. 25.
  26. 26.
    Lukatsky DB, Mulder BM, Frenkel D. J Phys Condens Matter. 2006;18(18):S567. https://doi.org/10.1088/0953-8984/18/18/S05. http://iopscience.iop.org/article/10.1088/0953-8984/18/18/S05.
  27. 27.
    Knorowski C, Burleigh S, Travesset A. Phys Rev Lett. 2011;106(21):215501.  https://doi.org/10.1103/PhysRevLett.106.215501. http://link.aps.org/doi/10.1103/PhysRevLett.106.215501.
  28. 28.
    Angioletti-Uberti S, Mognetti BM, Frenkel D. Nat Mater. 2012;11(6):518.CrossRefPubMedGoogle Scholar
  29. 29.
    Hagerman PJ. Annu Rev Biophys Chem. 1988;17(1):265.Google Scholar
  30. 30.
  31. 31.
    Wood JL. Biochem J. 1974;143:775.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lando DY, Haroutiunian SG, Kul’ba AM, Dalian EB, Orioli P, Mangani S, Akhrem AA. J Biomol Struct Dyn. 1994;12(2):355. https://doi.org/10.1080/07391102.1994.10508745. PMID: 7702774.CrossRefPubMedGoogle Scholar
  33. 33.
    Williams MC, Wenner JR, Rouzina I, Bloomfield VA. Biophys J. 2001;80(2):874. https://doi.org/10.1016/S0006-3495(01)76066-3. http://www.sciencedirect.com/science/article/pii/S0006349501760663.
  34. 34.
    Tempestini A, Cassina V, Brogioli D, Ziano R, Erba S, Giovannoni R, Cerrito MG, Salerno D, Mantegazza F. Nucleic Acids Res. 2013;41(3):2009.  https://doi.org/10.1093/nar/gks1206. http://nar.oxfordjournals.org/content/41/3/2009.abstract.
  35. 35.
    Seeman NC, Wang H, Yang X, Liu F, Mao C, Sun W, Wenzler L, Shen Z, Sha R, Yan H, Wong MH, Sa-Ardyen P, Liu B, Qiu H, Li X, Qi J, Du SM, Zhang Y, Mueller JE, Fu TJ, Wang Y, Chen J. Nanotechnology. 1998;9(3):257. https://doi.org/10.1088/0957-4484/9/3/018. http://iopscience.iop.org/article/10.1088/0957-4484/9/3/018.
  36. 36.
    Chen JH, Seeman NC. Nature. 1991;350(6319):631. https://doi.org/10.1038/350631a0. http://europepmc.org/abstract/med/2017259.
  37. 37.
    Park N, Um SH, Funabashi H, Xu J, Luo D. Nat Mater. 2009;8(5):432.CrossRefPubMedGoogle Scholar
  38. 38.
    Amir Y, Ben-Ishay E, Levner D, Ittah S, Abu-Horowitz A, Bachelet I. Nat Nanotechnol. 2014;9(5):353.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Largo J, Starr FW, Sciortino F. Langmuir. 2007;23:5896.CrossRefPubMedGoogle Scholar
  40. 40.
    Theodorakis P, Fytas N, Kahl G, Dellago C. Condens Matter Phys. 2015;18(2):22801.CrossRefGoogle Scholar
  41. 41.
    Napper DH. Polymeric stabilization of colloidal dispersions. Vol. 3. New York: Academic; 1983.Google Scholar
  42. 42.
    Nykypanchuk D, Maye MM, Van Der Lelie D, Gang O. Nature. 2008;451(7178):549.CrossRefPubMedGoogle Scholar
  43. 43.
    Feng L, Dreyfus R, Sha R, Seeman NC, Chaikin PM. Adv Mater. 2013;25(20):2779.  https://doi.org/10.1002/adma.201204864.CrossRefPubMedGoogle Scholar
  44. 44.
    Wang Y, Wang Y, Breed DR, Manoharan VN, Feng L, Hollingsworth AD, Weck M, Pine DJ. Nature. 2012;491(7422):51.CrossRefPubMedGoogle Scholar
  45. 45.
  46. 46.
    Kim JW, Kim JH, Deaton R. Angew Chem Int Ed. 2011;50(39):9185.  https://doi.org/10.1002/anie.201102342.CrossRefGoogle Scholar
  47. 47.
    Suzuki K, Hosokawa K, Maeda M. J Am Chem Soc. 2009;131(22):7518. https://doi.org/10.1021/ja9011386. PMID: 19445511.CrossRefPubMedGoogle Scholar
  48. 48.
    Halverson JD, Tkachenko AV. Phys Rev E. 2013;87(6):062310.CrossRefGoogle Scholar
  49. 49.
    van der Meulen SA, Leunissen ME. J Am Chem Soc. 2013;135(40):15129.CrossRefPubMedGoogle Scholar
  50. 50.
    Angioletti-Uberti S, Varilly P, Mognetti BM, Frenkel D. Phys Rev Lett. 2014;113(12):128303. http://link.aps.org/doi/10.1103/PhysRevLett.113.128303 CrossRefPubMedGoogle Scholar
  51. 51.
    Rogers WB, Manoharan VN. Science. 2015;347(6222):639.CrossRefPubMedGoogle Scholar
  52. 52.
    Romano F, Sciortino F. Phys Rev Lett. 2015;114(7):078104.CrossRefPubMedGoogle Scholar
  53. 53.
    Bomboi F, Romano F, Leo M, Fernandez-Castanon J, Cerbino R, Bellini T, Bordi F, Filetici P, Sciortino F. Nat Commun. 2016;7:13191.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Bianchi E, Largo J, Tartaglia P, Zaccarelli E, Sciortino F. Phys Rev Lett. 2006:97(16):168301.CrossRefPubMedGoogle Scholar
  55. 55.
    Romano F, Sanz E, Sciortino F. J Chem Phys. 2011;134(17):174502. https://doi.org/10.1063/1.3578182.CrossRefPubMedGoogle Scholar
  56. 56.
    Romano F, Sciortino F. Nat Commun. 2012;3:975.CrossRefPubMedGoogle Scholar
  57. 57.
    Nakata M, Zanchetta G, Chapman BD, Jones CD, Cross JO, Pindak R, Bellini T, Clark NA. Science. 2007;318:1276.CrossRefPubMedGoogle Scholar
  58. 58.
    Zanchetta G, Bellini T, Nakata M, Clark NA. J Am Chem Soc. 2008;130(39):12864. https://doi.org/10.1021/ja804718c.CrossRefPubMedGoogle Scholar
  59. 59.
    Zanchetta G, Nakata M, Buscaglia M, Clark NA, Bellini T. J Phys Condens Matter. 2008;20(49):494214.CrossRefGoogle Scholar
  60. 60.
    De Michele C, Bellini T, Sciortino F. Macromolecules. 2012;45(2):1090. https://doi.org/10.1021/ma201962x.CrossRefGoogle Scholar
  61. 61.
    De Michele C, Rovigatti L, Bellini T, Sciortino F. Soft Matter. 2012;8(32):8388.CrossRefGoogle Scholar
  62. 62.
    Nguyen KT, Battisti A, Ancora D, Sciortino F, De Michele C. Soft Matter. 2015;11:2934. https://doi.org/10.1039/C4SM01571A.CrossRefPubMedGoogle Scholar
  63. 63.
    Biffi S, Cerbino R, Nava G, Bomboi F, Sciortino F, Bellini T. Soft Matter. 2015;11:3132. https://doi.org/10.1039/C4SM02144D.CrossRefPubMedGoogle Scholar
  64. 64.
    Bomboi F, Biffi S, Cerbino R, Bellini T, Bordi F, Sciortino F. Eur Phys J E. 2015;38(6):64.  https://doi.org/10.1140/epje/i2015-15064-9.CrossRefPubMedGoogle Scholar
  65. 65.
    Rovigatti L, Bomboi F, Sciortino F. J Chem Phys. 2014;140(15):154903. https://doi.org/10.1063/1.4870467. http://scitation.aip.org/content/aip/journal/jcp/140/15/10.1063/1.4870467.
  66. 66.
    Rovigatti L, Smallenburg F, Romano F, Sciortino F. ACS Nano. 2014;8(4):3567.CrossRefPubMedGoogle Scholar
  67. 67.
    Smallenburg F, Sciortino F. Nat Phys. 2013;9(9):554.CrossRefGoogle Scholar
  68. 68.
    Swigon D. Mathematics of DNA structure, function and interactions. New York: Springer; 2009. p. 293–320.CrossRefGoogle Scholar
  69. 69.
    Peters JP, James Maher L. Q Rev Biophys. 2010;43(1):23. https://doi.org/10.1017/S0033583510000077. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4190679&tool=pmcentrez&rendertype=abstract.
  70. 70.
    Svozil D, Hobza P, Šponer J. J Phys Chem B. 2010;114(2):1191. https://doi.org/10.1021/jp910788e.CrossRefPubMedGoogle Scholar
  71. 71.
    Mládek A, Krepl M, Svozil D, Cech P, Otyepka M, Banáš P, Zgarbová M, Jurečka P, Sponer J. Phys Chem Chem Phys. 2013;15(19):7295. https://doi.org/10.1039/c3cp44383c. http://pubs.rsc.org/en/content/articlehtml/2013/cp/c3cp44383c.
  72. 72.
    Laughton CA, Harris SA. Wiley Interdiscip Rev Comput Mol Sci. 2011;1(4):590.  https://doi.org/10.1002/wcms.46. http://doi.wiley.com/10.1002/wcms.46.
  73. 73.
    Maffeo C, Yoo J, Comer J, Wells DB, Luan B, Aksimentiev A. J Phys Condens Matter. 2014;26(41):413101. https://doi.org/10.1088/0953-8984/26/41/413101. http://iopscience.iop.org/article/10.1088/0953-8984/26/41/413101.
  74. 74.
    SantaLucia J. Proc Natl Acad Sci. 1998;95(4):1460.Google Scholar
  75. 75.
  76. 76.
    Morriss-Andrews A, Rottler J, Plotkin SS. J Chem Phys. 2010;132(3):035105. https://doi.org/10.1063/1.3269994. http://scitation.aip.org/content/aip/journal/jcp/132/3/10.1063/1.3269994.
  77. 77.
    Savelyev A, Papoian GA. Proc Natl Acad Sci. 2010;107(47):20340.  https://doi.org/10.1073/pnas.1001163107.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Cragnolini T, Derreumaux P, Pasquali S. J Phys Chem B. 2013;117(27):8047. https://doi.org/10.1021/jp400786b. PMID: 23730911.CrossRefPubMedGoogle Scholar
  79. 79.
    Gonzalez O, Petkevičiūtė D, Maddocks JH. J Chem Phys. 2013;138(5):055102. https://doi.org/10.1063/1.4789411. http://scitation.aip.org/content/aip/journal/jcp/138/5/10.1063/1.4789411.
  80. 80.
  81. 81.
    Araque JC, Panagiotopoulos AZ, Robert MA. J Chem Phys. 2011;134(16):165103. https://doi.org/10.1063/1.3568145. http://scitation.aip.org/content/aip/journal/jcp/134/16/10.1063/1.3568145.
  82. 82.
    Hinckley DM, Freeman GS, Whitmer JK, de Pablo JJ. J Chem Phys. 2013;139(14):144903. https://doi.org/10.1063/1.4822042. http://scitation.aip.org/content/aip/journal/jcp/139/14/10.1063/1.4822042.
  83. 83.
    Hinckley DM, Lequieu JP, de Pablo JJ. J Chem Phys. 2014;141(3):035102. https://doi.org/10.1063/1.4886336. http://scitation.aip.org/content/aip/journal/jcp/141/3/10.1063/1.4886336.
  84. 84.
    Doye JP, Ouldridge TE, Louis AA, Romano F, Šulc P, Matek C, Snodin BE, Rovigatti L, Schreck JS, Harrison RM, et al. Phys Chem Chem Phys. 2013;15(47):20395.CrossRefPubMedGoogle Scholar
  85. 85.
    Snodin BEK, Randisi F, Mosayebi M, Šulc P, Schreck JS, Romano F, Ouldridge TE, Tsukanov R, Nir E, Louis AA, Doye JPK. J Chem Phys. 2015;142(23):234901. https://doi.org/10.1063/1.4921957. http://scitation.aip.org/content/aip/journal/jcp/142/23/10.1063/1.4921957.
  86. 86.
    Hinckley DM, de Pablo JJ. J Chem Theory Comput. 2015;11(11):5436.  https://doi.org/10.1021/acs.jctc.5b00341. PMID: 26574332.
  87. 87.
    Louis A. J Phys Condens Matter. 2002;14(40):9187.Google Scholar
  88. 88.
    Martinez-Veracoechea FJ, Mladek BM, Tkachenko AV, Frenkel D. Phys Rev Lett. 2011;107:045902.  https://doi.org/10.1103/PhysRevLett.107.045902. http://link.aps.org/doi/10.1103/PhysRevLett.107.045902.
  89. 89.
  90. 90.
    Ouldridge TE, Louis AA, Doye JP. J Chem Phys. 2011;134(8):085101.CrossRefPubMedGoogle Scholar
  91. 91.
    Ouldridge TE. Coarse-grained modelling of DNA and DNA self-assembly: coarse-grained modelling of DNA and DNA self-assembly. Berlin: Springer; 2012.CrossRefGoogle Scholar
  92. 92.
    Šulc P, Romano F, Ouldridge TE, Rovigatti L, Doye JP, Louis AA. J Chem Phys. 2012;137(13):135101.CrossRefPubMedGoogle Scholar
  93. 93.
    Šulc P, Romano F, Ouldridge TE, Doye JPK, Louis AA. J Chem Phys. 2014;140(23):235102.CrossRefPubMedGoogle Scholar
  94. 94.
    Ouldridge TE, Šulc P, Romano F, Doye JP, Louis AA. Nucleic Acids Res. 2013;41(19):8886.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Schreck JS, Ouldridge TE, Romano F, Šulc P, Shaw LP, Louis AA, Doye JP. Nucleic Acids Res. 2015.  https://doi.org/10.1093/nar/gkv582. http://nar.oxfordjournals.org/content/early/2015/06/08/nar.gkv582.abstract.
  96. 96.
    Matek C, Ouldridge TE, Doye JP, Louis AA. Sci Rep. 2015;5:7655.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Srinivas N, Ouldridge TE, Šulc P, Schaeffer JM, Yurke B, Louis AA, Doye JP, Winfree E. Nucleic Acids Res. 2013;41(22):10641.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Snodin BEK, Romano F, Rovigatti L, Ouldridge TE, Louis AA, Doye JPK. ACS Nano. 2016.  https://doi.org/10.1021/acsnano.5b05865. http://pubs.acs.org/doi/10.1021/acsnano.5b05865.
  99. 99.
    Mladek BM, Fornleitner J, Martinez-Veracoechea FJ, Dawid A, Frenkel D. Phys Rev Lett. 2012;108(26):268301.  https://doi.org/10.1103/PhysRevLett.108.268301.CrossRefPubMedGoogle Scholar
  100. 100.
    Rovigatti L, Šulc P, Reguly IZ, Romano F. J Comput Chem. 2015;36:1.  https://doi.org/10.1002/jcc.23763.CrossRefPubMedGoogle Scholar
  101. 101.
    Fernandez-Castanon J, Bomboi F, Rovigatti L, Zanatta M, Paciaroni A, Comez L, Porcar L, Jafta CJ, Fadda GC, Bellini T, Sciortino F. J Chem Phys. 2016;145(8):84910. https://doi.org/10.1063/1.4961398.CrossRefGoogle Scholar
  102. 102.
    Locatelli E, Handle PH, Likos CN, Sciortino F, Rovigatti L. ACS Nano. 2017;11(2):2094.  https://doi.org/10.1021/acsnano.6b08287.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Di Porcia M. Coarse grained simulation of DNA tetramers. Master Thesis. Sapienza Università di Roma; 2015.Google Scholar
  104. 104.
    Wertheim MS. J Stat Phys. 1984;35:19. https://doi.org/10.1007/BF01017362.
  105. 105.
    Wertheim MS. J Stat Phys. 1984;35:35. https://doi.org/10.1007/BF01017363.
  106. 106.
    Fantoni R, Pastore G. Mol Phys. 2015;113(17–18):2593. https://doi.org/10.1080/00268976.2015.1061150.CrossRefGoogle Scholar
  107. 107.
    Mladek BM, Frenkel D. Soft Matter. 2011;7:1450. https://doi.org/10.1039/C0SM00815J.CrossRefGoogle Scholar
  108. 108.
    Strzelecka TE, Davidson MW, Rill RL. Nature. 1988;331(6155):457.CrossRefPubMedGoogle Scholar
  109. 109.
    Bellini T, Cerbino R, Zanchetta G. In: Tschierske C, editor. Liquid crystals - materials design and self-assembly. Topics in current chemistry. Vol. 318. Berlin: Springer; 2012. p. 225–79. https://doi.org/10.1007/128_2011_230.Google Scholar
  110. 110.
    Prost J. The physics of liquid crystals. Vol. 83. Oxford: Oxford University Press; 1995.Google Scholar
  111. 111.
  112. 112.
    Zanchetta G, Giavazzi F, Nakata M, Buscaglia M, Cerbino R, Clark NA, Bellini T. Proc Natl Acad Sci USA. 2010;107(41):17497.  https://doi.org/10.1073/pnas.1011199107.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Nguyen KT, Battisti A, Ancora D, Sciortino F, De Michele C. Soft Matter. 2015;11(15):2934. https://doi.org/10.1039/c4sm01571a. http://pubs.rsc.org/en/Content/ArticleHTML/2015/SM/C4SM01571A.
  114. 114.
    Liu W, Tagawa M, Xin HL, Wang T, Emamy H, Li H, Yager KG, Starr FW, Tkachenko AV, Gang O. Science. 2016;351(6273):582.  https://doi.org/10.1126/science.aad2080. http://science.sciencemag.org/content/351/6273/582.abstract.
  115. 115.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca’ FoscariVeneziaItaly
  2. 2.CNR-ISC, Uos SapienzaRomaItaly

Personalised recommendations